157,525 research outputs found

    Distributed Management of Massive Data: an Efficient Fine-Grain Data Access Scheme

    Get PDF
    This paper addresses the problem of efficiently storing and accessing massive data blocks in a large-scale distributed environment, while providing efficient fine-grain access to data subsets. This issue is crucial in the context of applications in the field of databases, data mining and multimedia. We propose a data sharing service based on distributed, RAM-based storage of data, while leveraging a DHT-based, natively parallel metadata management scheme. As opposed to the most commonly used grid storage infrastructures that provide mechanisms for explicit data localization and transfer, we provide a transparent access model, where data are accessed through global identifiers. Our proposal has been validated through a prototype implementation whose preliminary evaluation provides promising results

    Deterministic Parallel Hypergraph Partitioning

    Get PDF
    Balanced hypergraph partitioning is a classical NP-hard optimization problem with applications in various domains such as VLSI design, simulating quantum circuits, optimizing data placement in distributed databases or minimizing communication volume in high-performance computing. Engineering parallel heuristics for this problem is a topic of recent research. Most of them are non-deterministic though. In this work, we design and implement a highly scalable deterministic algorithm in the state-of-the-art parallel partitioning framework Mt-KaHyPar. On our extensive set of benchmark instances, it achieves similar partition quality and performance as a comparable but non-deterministic configuration of Mt-KaHyPar and outperforms the only other existing parallel deterministic algorithm BiPart regarding partition quality, running time and parallel speedups

    ART Neural Networks: Distributed Coding and ARTMAP Applications

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include airplane design and manufacturing, automatic target recognition, financial forecasting, machine tool monitoring, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, Gaussian ARTMAP, and distributed ARTMAP. ARTMAP has been used for a variety of applications, including computer-assisted medical diagnosis. Medical databases present many of the challenges found in general information management settings where speed, efficiency, ease of use, and accuracy are at a premium. A direct goal of improved computer-assisted medicine is to help deliver quality emergency care in situations that may be less than ideal. Working with these problems has stimulated a number of ART architecture developments, including ARTMAP-IC [1]. This paper describes a recent collaborative effort, using a new cardiac care database for system development, has brought together medical statisticians and clinicians at the New England Medical Center with researchers developing expert systems and neural networks, in order to create a hybrid method for medical diagnosis. The paper also considers new neural network architectures, including distributed ART {dART), a real-time model of parallel distributed pattern learning that permits fast as well as slow adaptation, without catastrophic forgetting. Local synaptic computations in the dART model quantitatively match the paradoxical phenomenon of Markram-Tsodyks [2] redistribution of synaptic efficacy, as a consequence of global system hypotheses.Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    PatchIndex: exploiting approximate constraints in distributed databases

    Get PDF
    Cloud data warehouse systems lower the barrier to access data analytics. These applications often lack a database administrator and integrate data from various sources, potentially leading to data not satisfying strict constraints. Automatic schema optimization in self-managing databases is difficult in these environments without prior data cleaning steps. In this paper, we focus on constraint discovery as a subtask of schema optimization. Perfect constraints might not exist in these unclean datasets due to a small set of values violating the constraints. Therefore, we introduce the concept of a generic PatchIndex structure, which handles exceptions to given constraints and enables database systems to define these approximate constraints. We apply the concept to the environment of distributed databases, providing parallel index creation approaches and optimization techniques for parallel queries using PatchIndexes. Furthermore, we describe heuristics for automatic discovery of PatchIndex candidate columns and prove the performance benefit of using PatchIndexes in our evaluation

    Efficient Multi-way Theta-Join Processing Using MapReduce

    Full text link
    Multi-way Theta-join queries are powerful in describing complex relations and therefore widely employed in real practices. However, existing solutions from traditional distributed and parallel databases for multi-way Theta-join queries cannot be easily extended to fit a shared-nothing distributed computing paradigm, which is proven to be able to support OLAP applications over immense data volumes. In this work, we study the problem of efficient processing of multi-way Theta-join queries using MapReduce from a cost-effective perspective. Although there have been some works using the (key,value) pair-based programming model to support join operations, efficient processing of multi-way Theta-join queries has never been fully explored. The substantial challenge lies in, given a number of processing units (that can run Map or Reduce tasks), mapping a multi-way Theta-join query to a number of MapReduce jobs and having them executed in a well scheduled sequence, such that the total processing time span is minimized. Our solution mainly includes two parts: 1) cost metrics for both single MapReduce job and a number of MapReduce jobs executed in a certain order; 2) the efficient execution of a chain-typed Theta-join with only one MapReduce job. Comparing with the query evaluation strategy proposed in [23] and the widely adopted Pig Latin and Hive SQL solutions, our method achieves significant improvement of the join processing efficiency.Comment: VLDB201
    • …
    corecore