7,932 research outputs found

    Compact Markov-modulated models for multiclass trace fitting

    Get PDF
    Markov-modulated Poisson processes (MMPPs) are stochastic models for fitting empirical traces for simulation, workload characterization and queueing analysis purposes. In this paper, we develop the first counting process fitting algorithm for the marked MMPP (M3PP), a generalization of the MMPP for modeling traces with events of multiple types. We initially explain how to fit two-state M3PPs to empirical traces of counts. We then propose a novel form of composition, called interposition, which enables the approximate superposition of several two-state M3PPs without incurring into state space explosion. Compared to exact superposition, where the state space grows exponentially in the number of composed processes, in interposition the state space grows linearly in the number of composed M3PPs. Experimental results indicate that the proposed interposition methodology provides accurate results against artificial and real-world traces, with a significantly smaller state space than superposed processes

    A Bayesian Framework for Estimating Seismic Wave Arrival Time

    Get PDF
    Because earthquakes have a large impact on human society, statistical methods for better studying earthquakes are required. One characteristic of earthquakes is the arrival time of seismic waves at a seismic signal sensor. Once we can estimate the earthquake arrival time accurately, the earthquake location can be triangulated, and assistance can be sent to that area correctly. This study presents a Bayesian framework to predict the arrival time of seismic waves with associated uncertainty. We use a change point framework to model the different conditions before and after the seismic wave arrives. To evaluate the performance of the model, we conducted a simulation study where we could evaluate the predictive performance of the model framework. The results show that our method has acceptable performance of arrival time prediction with accounting for the uncertainty

    A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times

    Full text link
    In this paper, we provide a matrix-analytic solution for randomized load balancing models (also known as \emph{supermarket models}) with phase-type (PH) service times. Generalizing the service times to the phase-type distribution makes the analysis of the supermarket models more difficult and challenging than that of the exponential service time case which has been extensively discussed in the literature. We first describe the supermarket model as a system of differential vector equations, and provide a doubly exponential solution to the fixed point of the system of differential vector equations. Then we analyze the exponential convergence of the current location of the supermarket model to its fixed point. Finally, we present numerical examples to illustrate our approach and show its effectiveness in analyzing the randomized load balancing schemes with non-exponential service requirements.Comment: 24 page

    Joint segmentation of multivariate astronomical time series : bayesian sampling with a hierarchical model

    Get PDF
    Astronomy and other sciences often face the problem of detecting and characterizing structure in two or more related time series. This paper approaches such problems using Bayesian priors to represent relationships between signals with various degrees of certainty, and not just rigid constraints. The segmentation is conducted by using a hierarchical Bayesian approach to a piecewise constant Poisson rate model. A Gibbs sampling strategy allows joint estimation of the unknown parameters and hyperparameters. Results obtained with synthetic and real photon counting data illustrate the performance of the proposed algorithm

    Aggregate matrix-analytic techniques and their applications

    Get PDF
    The complexity of computer systems affects the complexity of modeling techniques that can be used for their performance analysis. In this dissertation, we develop a set of techniques that are based on tractable analytic models and enable efficient performance analysis of computer systems. Our approach is three pronged: first, we propose new techniques to parameterize measurement data with Markovian-based stochastic processes that can be further used as input into queueing systems; second, we propose new methods to efficiently solve complex queueing models; and third, we use the proposed methods to evaluate the performance of clustered Web servers and propose new load balancing policies based on this analysis.;We devise two new techniques for fitting measurement data that exhibit high variability into Phase-type (PH) distributions. These techniques apply known fitting algorithms in a divide-and-conquer fashion. We evaluate the accuracy of our methods from both the statistics and the queueing systems perspective. In addition, we propose a new methodology for fitting measurement data that exhibit long-range dependence into Markovian Arrival Processes (MAPs).;We propose a new methodology, ETAQA, for the exact solution of M/G/1-type processes, (GI/M/1-type processes, and their intersection, i.e., quasi birth-death (QBD) processes. ETAQA computes an aggregate steady state probability distribution and a set of measures of interest. E TAQA is numerically stable and computationally superior to alternative solution methods. Apart from ETAQA, we propose a new methodology for the exact solution of a class of GI/G/1-type processes based on aggregation/decomposition.;Finally, we demonstrate the applicability of the proposed techniques by evaluating load balancing policies in clustered Web servers. We address the high variability in the service process of Web servers by dedicating the servers of a cluster to requests of similar sizes and propose new, content-aware load balancing policies. Detailed analysis shows that the proposed policies achieve high user-perceived performance and, by continuously adapting their scheduling parameters to the current workload characteristics, provide good performance under conditions of transient overload

    SolarStat: Modeling Photovoltaic Sources through Stochastic Markov Processes

    Full text link
    In this paper, we present a methodology and a tool to derive simple but yet accurate stochastic Markov processes for the description of the energy scavenged by outdoor solar sources. In particular, we target photovoltaic panels with small form factors, as those exploited by embedded communication devices such as wireless sensor nodes or, concerning modern cellular system technology, by small-cells. Our models are especially useful for the theoretical investigation and the simulation of energetically self-sufficient communication systems including these devices. The Markov models that we derive in this paper are obtained from extensive solar radiation databases, that are widely available online. Basically, from hourly radiance patterns, we derive the corresponding amount of energy (current and voltage) that is accumulated over time, and we finally use it to represent the scavenged energy in terms of its relevant statistics. Toward this end, two clustering approaches for the raw radiance data are described and the resulting Markov models are compared against the empirical distributions. Our results indicate that Markov models with just two states provide a rough characterization of the real data traces. While these could be sufficiently accurate for certain applications, slightly increasing the number of states to, e.g., eight, allows the representation of the real energy inflow process with an excellent level of accuracy in terms of first and second order statistics. Our tool has been developed using Matlab(TM) and is available under the GPL license at[1].Comment: Submitted to IEEE EnergyCon 201
    corecore