640 research outputs found

    Optimizing simulation on shared-memory platforms: The smart cities case

    Get PDF
    Modern advancements in computing architectures have been accompanied by new emergent paradigms to run Parallel Discrete Event Simulation models efficiently. Indeed, many new paradigms to effectively use the available underlying hardware have been proposed in the literature. Among these, the Share-Everything paradigm tackles massively-parallel shared-memory machines, in order to support speculative simulation by taking into account the limits and benefits related to this family of architectures. Previous results have shown how this paradigm outperforms traditional speculative strategies (such as data-separated Time Warp systems) whenever the granularity of executed events is small. In this paper, we show performance implications of this simulation-engine organization when the simulation models have a variable granularity. To this end, we have selected a traffic model, tailored for smart cities-oriented simulation. Our assessment illustrates the effects of the various tuning parameters related to the approach, opening to a higher understanding of this innovative paradigm

    NUMA Time Warp

    Get PDF
    It is well known that Time Warp may suffer from large usage of memory, which may hamper the efficiency of the memory hierarchy. To cope with this issue, several approaches have been devised, mostly based on the reduction of the amount of used virtual memory, e.g., by the avoidance of checkpointing and the exploitation of reverse computing. In this article we present an orthogonal solution aimed at optimizing the latency for memory access operations when running Time Warp systems on Non-Uniform Memory Access (NUMA) multi-processor/multi-core computing systems. More in detail, we provide an innovative Linux-based architecture allowing per simulation-object management of memory segments made up by disjoint sets of pages, and supporting both static and dynamic binding of the memory pages reserved for an individual object to the different NUMA nodes, depending on what worker thread is in charge of running that simulation object along a given wall-clock-time window. Our proposal not only manages the virtual pages used for the live state image of the simulation object, rather, it also copes with memory pages destined to keep the simulation object's event buffers and any recoverability data. Further, the architecture allows memory access optimization for data (messages) exchanged across the different simulation objects running on the NUMA machine. Our proposal is fully transparent to the application code, thus operating in a seamless manner. Also, a free software release of our NUMA memory manager for Time Warp has been made available within the open source ROOT-Sim simulation platform. Experimental data for an assessment of our innovative proposal are also provided in this article

    Towards large-scale what-if traffic simulation with exact-differential simulation

    Get PDF
    To analyze and predict a behavior of large-scale traffics with what-if simulation, it needs to repeat many times with various patterns of what-if scenarios. In this paper, we propose new techniques to efficiently repeat what-if simulation tasks with exact-differential simulation. The paper consists of two main efforts: what-if scenario filtering and exact-differential cloning. The what-if scenario filtering enables to pick up meaningful what-if scenarios and reduces the number of what-if scenarios, which directly decreases total execution time of repeating. The exact-differential cloning enables to execute exact-differential simulation tasks in parallel to improve its total execution time. In our preliminary evaluation in Tokyo bay area's traffic simulation, we show potential of our proposals by estimating how the what-if scenarios filtering reduces the number of meaningless scenarios and also by estimating a performance improvement from our previous works with the exact-differential cloning

    Virtual time-aware virtual machine systems

    Get PDF
    Discrete dynamic system models that track, maintain, utilize, and evolve virtual time are referred to as virtual time systems (VTS). The realization of VTS using virtual machine (VM) technology offers several benefits including fidelity, scalability, interoperability, fault tolerance and load balancing. The usage of VTS with VMs appears in two ways: (a) VMs within VTS, and (b) VTS over VMs. The former is prevalent in high-fidelity cyber infrastructure simulations and cyber-physical system simulations, wherein VMs form a crucial component of VTS. The latter appears in the popular Cloud computing services, where VMs are offered as computing commodities and the VTS utilizes VMs as parallel execution platforms. Prior to our work presented here, the simulation community using VM within VTS (specifically, cyber infrastructure simulations) had little awareness of the existence of a fundamental virtual time-ordering problem. The correctness problem was largely unnoticed and unaddressed because of the unrecognized effects of fair-share multiplexing of VMs to realize virtual time evolution of VMs within VTS. The dissertation research reported here demonstrated the latent incorrectness of existing methods, defined key correctness benchmarks, quantitatively measured the incorrectness, proposed and implemented novel algorithms to overcome incorrectness, and optimized the solutions to execute without a performance penalty. In fact our novel, correctness-enforcing design yields better runtime performance than the traditional (incorrect) methods. Similarly, the VTS execution over VM platforms such as Cloud computing services incurs large performance degradation, which was not known until our research uncovered the fundamental mismatch between the scheduling needs of VTS execution and those of traditional parallel workloads. Consequently, we designed a novel VTS-aware hypervisor scheduler and showed significant performance gains in VTS execution over VM platforms. Prior to our work, the performance concern of VTS over VM was largely unaddressed due to the absence of an understanding of execution policy mismatch between VMs and VTS applications. VTS follows virtual-time order execution whereas the conventional VM execution follows fair-share policy. Our research quantitatively uncovered the exact cause of poor performance of VTS in VM platforms. Moreover, we proposed and implemented a novel virtual time-aware execution methodology that relieves the degradation and provides over an order of magnitude faster execution than the traditional virtual time-unaware execution.Ph.D

    Identifying and Harnessing Concurrency for Parallel and Distributed Network Simulation

    Get PDF
    Although computer networks are inherently parallel systems, the parallel execution of network simulations on interconnected processors frequently yields only limited benefits. In this thesis, methods are proposed to estimate and understand the parallelization potential of network simulations. Further, mechanisms and architectures for exploiting the massively parallel processing resources of modern graphics cards to accelerate network simulations are proposed and evaluated

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Security and privacy issues in some special-puropse networks

    Get PDF
    This thesis is about providing security and privacy to new emergent applications which are based on special-purpose networks. More precisely, we study different aspects regarding security and privacy issues related to sensor networks, mobile ad hoc networks, vehicular ad hoc networks and social networks.Sensor networks consist of resource-constrained wireless devices with sensor capabilities. This emerging technology has a wide variety of applications related to event surveillance like emergency response, habitat monitoring or defense-related networks.Ad hoc networks are suited for use in situations where deploying an infrastructure is not cost effective or is not possible for any other reason. When the nodes of an ad hoc network are small mobile devices (e.g. cell phones or PDAs), such a network is called mobile ad hoc network. One of many possible uses of MANETs is to provide crisis management services applications, such as in disaster recovery, where the entire communication infrastructure is destroyed and reestablishing communication quickly is crucial. Another useful situation for MANETs is a scenario without fixed communication systems where there is the need for any kind of collaborative computing. Such situation can occur in both business and military environments.When the mobile nodes of a MANET are embedded in cars, such a network is called Vehicular Ad hoc Network (VANET). This kind of networks can be very useful to increase the road traffic safety and they will be deployed for real use in the forthcoming years. As a proof of that, eight important European vehicle manufacturers have founded the CAR 2 CAR Communication Consortium. This non-profit organisation is dedicated to the objective of further increasing traffic safety and efficiency by means of inter-vehicle communications.Social networks differ from the special-purpose networks commented above in that they are not physical networks. Social networks are applications that work through classic networks. They can be defined as a community of web users where each user can publish and share information and services. Social networks have become an object of study both in computer and social sciences, with even dedicated journals and conferences.The special-purpose networks described above provide a wide range of new services and applications. Even though they are expected to improve the society in several ways, these innovative networks and their related applications bring also security and privacy issues that must be addressed.This thesis solves some security and privacy issues related to such new applications and services. More specifically, it focuses on:·Secure information transmission in many-to-one scenarios with resource-constrained devices such as sensor networks.·Secure and private information sharing in MANETs.·Secure and private information spread in VANETs.·Private resource access in social networks.Results presented in this thesis include four contributions published in ISI JCR journals (IEEE Transactions on Vehicular Technology, Computer Networks (2) and Computer Communications) and two contributions published in two international conferences (Lecture Notes in Computer Science).Esta tesis trata diversos problemas de seguridad y privacidad que surgen al implantar en escenarios reales novedosas aplicaciones basadas en nuevos y emergentes modelos de red. Estos nuevos modelos de red difieren significativamente de las redes de computadores clásicas y son catalogadas como redes de propósito especial. Específicamente, en este trabajo se estudian diferentes aspectos relacionados con la seguridad de la información y la privacidad de los usuarios en redes de sensores, redes ad hoc móviles (MANETs), redes ad hoc vehiculares (VANETs) y redes sociales.Las redes de sensores están formadas por dispositivos inalámbricos muy limitados a nivel de recursos (capacidad de computación y batería) que detectan eventos o condiciones del entorno donde se instalan. Esta tecnología tiene una amplia variedad de aplicaciones entre las que destacan la detección de emergencias o la creación de perímetros de seguridad. Una MANET esta formada por nodos móviles conectados entre ellos mediante conexiones inalámbricas y de forma auto-organizada. Este tipo de redes se constituye sin la ayuda de infraestructuras, por ello son especialmente útiles en situaciones donde implantar una infraestructura es inviable por ser su coste demasiado elevado o por cualquier otra razón. Una de las muchas aplicaciones de las MANETs es proporcionar servicio en situaciones críticas (por ejemplo desastres naturales) donde la infraestructura de comunicaciones ha sido destruida y proporcionar conectividad rápidamente es crucial. Otra aplicación directa aparece en escenarios sin sistemas de comunicación fijos donde existe la necesidad de realizar algún tipo de computación colaborativa entre diversas máquinas. Esta situación se da tanto en ámbitos empresariales como militares.Cuando los nodos móviles de una MANET se asocian a vehículos (coches, camiones.), dicha red se denomina red ad hoc vehicular o VANET. Este tipo de redes pueden ser muy útiles para incrementar la seguridad vial y se espera su implantación para uso real en los próximos años. Como prueba de la gran importancia que tiene esta tecnología, los ocho fabricantes europeos más importantes han fundado la CAR 2 CAR Communication Consortium. Esta organización tiene como objetivo incrementar la seguridad y la eficiencia del tráfico mediante el uso de comunicaciones entre los vehículos.Las redes sociales se diferencian de las redes especiales descritas anteriormente en que éstas no son redes físicas. Las redes sociales son aplicaciones que funcionan a través de las redes de computadores clásicas. Una red de este tipo puede ser definida como una comunidad de usuarios web en donde dichos usuarios pueden publicar y compartir información y servicios. En la actualidad, las redes sociales han adquirido gran importancia ofreciendo un amplio abanico de posibilidades a sus usuarios: trabajar de forma colaborativa, compartir ficheros, búsqueda de nuevos amigos, etc.A continuación se resumen las aplicaciones en las que esta tesis se centra según el tipo de red asociada:·Transmisión segura de información en escenarios muchos-a-uno (múltiples emisores y un solo receptor) donde los dispositivos en uso poseen recursos muy limitados. Este escenario es el habitual en redes de sensores.·Distribución de información de forma segura y preservando la privacidad de los usuarios en redes ad hoc móviles.·Difusión de información (con el objeto de incrementar la seguridad vial) fidedigna preservando la privacidad de los usuarios en redes ad hoc vehiculares.·Acceso a recursos en redes sociales preservando la privacidad de los usuarios. Los resultados de la tesis incluyen cuatro publicaciones en revistas ISI JCR (IEEE Transactions on Vehicular Technology, Computer Networks (2) y Computer Communications) y dos publicaciones en congresos internacionales(Lecture Notes in Computer Science)

    Approaching parallel computing to simulating population dynamics in demography

    Get PDF
    Agent-based modelling and simulation is a promising methodology that can be applied in the study of population dynamics. The main advantage of this technique is that it allows representing the particularities of the individuals that are modeled along with the interactions that take place among them and their environment. Hence, classical numerical simulation approaches are less adequate for reproducing complex dynamics. Nowadays, there is a rise of interest on using distributed computing to perform large-scale simulation of social systems. However, the inherent complexity of this type of applications is challenging and requires the study of possible solutions from the parallel computing perspective (e.g., how to deal with fine grain or irregular workload). In this paper, we discuss the particularities of simulating populating dynamics by using parallel discrete event simulation methodologies. To illustrate our approach, we present a possible solution to make transparent the use of parallel simulation for modeling demographic systems: Yades tool. In Yades, modelers can easily define models that describe different demographic processes with a web user interface and transparently run them on any computer architecture environment thanks to its demographic simulation library and code generator. Therefore, transparency is provided by by two means: the provision of a web user interface where modelers and policy makers can specify their agent-based models with the tools they are familiar with, and the automatic generation of the simulation code that can be executed in any platform (cluster or supercomputer). A study is conducted to evaluate the performance of our solution in a High Performance Computing environment. The main benefit of this outline is that our findings can be generalized to problems with similar characteristics to our demographic simulation model

    Characterization, Avoidance and Repair of Packet Collisions in Inter-Vehicle Communication Networks

    Get PDF
    This work proposes a combined and accurate simulation of wireless channel, physical layer and networking aspects in order to bridge the gaps between the corresponding research communities. The resulting high fidelity simulations enable performance optimizations across multiple layers, and are used in the second part of this thesis to evaluate the impact of fast-fading channel characteristics on Carrier-Sense Multiple Access, and to quantify the benefit of successive interference cancellation

    Characterization, Avoidance and Repair of Packet Collisions in Inter-Vehicle Communication Networks

    Get PDF
    This work proposes a combined and accurate simulation of wireless channel, physical layer and networking aspects in order to bridge the gaps between the corresponding research communities. The resulting high fidelity simulations enable performance optimizations across multiple layers, and are used in the second part of this thesis to evaluate the impact of fast-fading channel characteristics on Carrier-Sense Multiple Access, and to quantify the benefit of successive interference cancellation
    • …
    corecore