831 research outputs found

    Efficient Processing of k Nearest Neighbor Joins using MapReduce

    Full text link
    k nearest neighbor join (kNN join), designed to find k nearest neighbors from a dataset S for every object in another dataset R, is a primitive operation widely adopted by many data mining applications. As a combination of the k nearest neighbor query and the join operation, kNN join is an expensive operation. Given the increasing volume of data, it is difficult to perform a kNN join on a centralized machine efficiently. In this paper, we investigate how to perform kNN join using MapReduce which is a well-accepted framework for data-intensive applications over clusters of computers. In brief, the mappers cluster objects into groups; the reducers perform the kNN join on each group of objects separately. We design an effective mapping mechanism that exploits pruning rules for distance filtering, and hence reduces both the shuffling and computational costs. To reduce the shuffling cost, we propose two approximate algorithms to minimize the number of replicas. Extensive experiments on our in-house cluster demonstrate that our proposed methods are efficient, robust and scalable.Comment: VLDB201

    Distance Range Queries in SpatialHadoop

    Get PDF
    Efficient processing of Distance Range Queries (DRQs) is of great importance in spatial databases due to the wide area of applications. This type of spatial query is characterized by a distance range over one or two datasets. The most representative and known DRQs are the ε Distance Range Query (εDRQ) and the ε Distance Range Join Query (εDRJQ). Given the increasing volume of spatial data, it is difficult to perform a DRQ on a centralized machine efficiently. Moreover, the εDRJQ is an expensive spatial operation, since it can be considered a combination of the εDR and the spatial join queries. For this reason, this paper addresses the problem of computing DRQs on big spatial datasets in SpatialHadoop, an extension of Hadoop that supports spatial operations efficiently, and proposes new algorithms in SpatialHadoop to perform efficient parallel DRQs on large-scale spatial datasets. We have evaluated the performance of the proposed algorithms in several situations with big synthetic and real-world datasets. The experiments have demonstrated the efficiency and scalability of our proposal

    Parallel and Distributed Processing of Spatial Preference Queries using Keywords

    Get PDF
    published_or_final_versio

    Efficient Large-scale Distance-Based Join Queries in SpatialHadoop

    Get PDF
    Efficient processing of Distance-Based Join Queries (DBJQs) in spatial databases is of paramount importance in many application domains. The most representative and known DBJQs are the K Closest Pairs Query (KCPQ) and the ε Distance Join Query (εDJQ). These types of join queries are characterized by a number of desired pairs (K) or a distance threshold (ε) between the components of the pairs in the final result, over two spatial datasets. Both are expensive operations, since two spatial datasets are combined with additional constraints. Given the increasing volume of spatial data originating from multiple sources and stored in distributed servers, it is not always efficient to perform DBJQs on a centralized server. For this reason, this paper addresses the problem of computing DBJQs on big spatial datasets in SpatialHadoop, an extension of Hadoop that supports efficient processing of spatial queries in a cloud-based setting. We propose novel algorithms, based on plane-sweep, to perform efficient parallel DBJQs on large-scale spatial datasets in Spatial Hadoop. We evaluate the performance of the proposed algorithms in several situations with large real-world as well as synthetic datasets. The experiments demonstrate the efficiency and scalability of our proposed methodologies
    • …
    corecore