9,988 research outputs found

    Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV. CTA is proposed to consist of two arrays of 40-100 imaging atmospheric Cherenkov telescopes, with one site located in each of the Northern and Southern Hemispheres. The evaluation process for the candidate sites for CTA is supported by detailed Monte Carlo simulations, which take different attributes like site altitude and geomagnetic field configuration into account. In this contribution we present the comparison of the sensitivity and performance of the different CTA site candidates for the measurement of very-high energy gamma rays.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    An assessment of the potential contributions to oceanography from Skylab visual observations and hand-held photography

    Get PDF
    There are no author-identified significant results in this report

    Cell migration through 3D confining pores: speed accelerations by deformation and recoil of the nucleus

    Get PDF
    Directional cell migration in dense three-dimensional (3D) environments critically depends upon shape adaptation and is impeded depending on the size and rigidity of the nucleus. Accordingly, the nucleus is primarily understood as a physical obstacle, however, its pro-migratory functions by step-wise deformation and reshaping remain unclear. Using atomic force spectroscopy, timelapse fluorescence microscopy and shape change analysis tools, we determined nuclear size, deformability, morphology and shape change of HT1080 fibrosarcoma cells expressing the Fucci cell cycle indicator or being pre-treated with chromatin-decondensating agent TSA. We show oscillating peak accelerations during migration through 3D collagen matrices and microdevices that occur during shape reversion of deformed nuclei (recoil), and increase with confinement. During G1 cell cycle phase, nucleus stiffness was increased and yielded further increased speed fluctuations together with sustained cell migration rates in confinement as compared to interphase populations, or to periods of intrinsic nuclear softening in the S/G2 cell cycle phase. Likewise, nuclear softening by pharmacological chromatin decondensation or after lamin A/C depletion reduced peak oscillations in confinement. In conclusion, deformation and recoil of the stiff nucleus contributes to saltatory locomotion in dense tissues

    In vivo functional and myeloarchitectonic mapping of human primary auditory areas

    Get PDF
    In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with postmortem cyto- or myeloarchitectonics from the same individual. We combined high-resolution (800 μm) quantitative T(1) mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the "auditory core" of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to postmortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two "mirror-image" tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that these two maps within the core are the human analogs of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multimodal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies

    Virtual and Real Data Populated Intersection Visualization and Testing Tool for V2X Application Development

    Full text link
    The capability afforded by Vehicle-to-Vehicle communication improves situational awareness and provides advantages for many of the traffic problems caused by reduced visibility or No-Line-of-Sight situations, being useful for both autonomous and non-autonomous driving. Additionally, with the traffic light Signal Phase and Timing and Map Datainformation and other advisory information provided with Vehicle-to-Infrastructure (V2I) communication, outcomes which benefit the driver in the long run, such as reducing fuel consumption with speed regulation or decreasing traffic congestion through optimal speed advisories, providing red light violation warning messages and intersection motion assist messages for collision-free intersection maneuvering are all made possible. However, developing applications to obtain these benefits requires an intensive development process within a lengthy testing period. Understanding the intersection better is a large part of this development process. Being able to see what information is broadcasted and how this information translates into the real world would both benefit the development of these highly useful applications and also ensure faster evaluation, when presented visually, using an easy to use and interactive tool. Moreover, recordings of this broadcasted information can be modified and used for repeated testing. Modification of the data makes it flexible and allows us to use it for a variety of testing scenarios at a virtually populated intersection. Based on this premise, this paper presents and demonstrates visualization tools to project SPaT, MAP and Basic Safety Message information into easy to read real-world based graphs. Also, it provides information about the modification of the real-world data to allow creation of a virtually populated intersection, along with the capability to also inject virtual vehicles at this intersection

    Molecular access to multi-dimensionally encoded information

    Get PDF
    Polymer scientist have only recently realized that information storage on the molecular level is not only restricted to DNA-based systems. Similar encoding and decoding of data have been demonstrated on synthetic polymers that could overcome some of the drawbacks associated with DNA, such as the ability to make use of a larger monomer alphabet. This feature article describes some of the recent data storage strategies that were investigated, ranging from writing information on linear sequence-defined macromolecules up to layer-by-layer casted surfaces and QR codes. In addition, some strategies to increase storage density are elaborated and some trends regarding future perspectives on molecular data storage from the literature are critically evaluated. This work ends with highlighting the demand for new strategies setting up reliable solutions for future data management technologies
    corecore