2,091 research outputs found

    Optimising Simulation Data Structures for the Xeon Phi

    Get PDF
    In this paper, we propose a lock-free architecture to accelerate logic gate circuit simulation using SIMD multi-core machines. We evaluate its performance on different test circuits simulated on the Intel Xeon Phi and 2 other machines. Comparisons are presented of this software/hardware combination with reported performances of GPU and other multi-core simulation platforms. Comparisons are also given between the lock free architecture and a leading commercial simulator running on the same Intel hardware

    Parallelization of cycle-based logic simulation

    Get PDF
    Verification of digital circuits by Cycle-based simulation can be performed in parallel. The parallel implementation requires two phases: the compilation phase, that sets up the data needed for the execution of the simulation, and the simulation phase, that consists in executing the parallel simulation of the considered circuit for a certain number of cycles. During the early phase of design, compilation phase has to be repeated each time a bug is found. Thus, if the time of the compilation phase is too high, the advantages stemming from the parallel approach may be lost. In this work we propose an effective version of the compilation phase and compute the corresponding execution time. We also analyze the percentage of execution time required by the different steps of the compilation phase for a set of literature benchmarks. Further, we implemented the simulation phase exploiting the GPU architecture, and we computed the execution times for a set of benchmarks obtaining values comparable with literature ones. Finally, we implemented the sequential version of the Cycle-based simulation in such a way that the execution time is optimized. We used the sequential values to compute the speedup of the parallel version for the considered set of benchmarks

    Energy-Efficient Hardware-Accelerated Synchronization for Shared-L1-Memory Multiprocessor Clusters

    Get PDF
    The steeply growing performance demands for highly power- and energy-constrained processing systems such as end-nodes of the Internet-of-Things (IoT) have led to parallel near-threshold computing (NTC), joining the energy-efficiency benefits of low-voltage operation with the performance typical of parallel systems. Shared-L1-memory multiprocessor clusters are a promising architecture, delivering performance in the order of GOPS and over 100 GOPS/W of energy-efficiency. However, this level of computational efficiency can only be reached by maximizing the effective utilization of the processing elements (PEs) available in the clusters. Along with this effort, the optimization of PE-to-PE synchronization and communication is a critical factor for performance. In this article, we describe a light-weight hardware-accelerated synchronization and communication unit (SCU) for tightly-coupled clusters of processors. We detail the architecture, which enables fine-grain per-PE power management, and its integration into an eight-core cluster of RISC-V processors. To validate the effectiveness of the proposed solution, we implemented the eight-core cluster in advanced 22 nm FDX technology and evaluated performance and energy-efficiency with tunable microbenchmarks and a set of rea-life applications and kernels. The proposed solution allows synchronization-free regions as small as 42 cycles, over 41 smaller than the baseline implementation based on fast test-and-set access to L1 memory when constraining the microbenchmarks to 10 percent synchronization overhead. When evaluated on the real-life DSP-applications, the proposed SCU improves performance by up to 92 and 23 percent on average and energy efficiency by up to 98 and 39 percent on average

    Support for Programming Models in Network-on-Chip-based Many-core Systems

    Get PDF

    Optimising Simulation Data Structures for the Xeon Phi

    Get PDF
    In this paper, we propose a lock-free architecture to accelerate logic gate circuit simulation using SIMD multi-core machines. We evaluate its performance on different test circuits simulated on the Intel Xeon Phi and 2 other machines. Comparisons are presented of this software/hardware combination with reported performances of GPU and other multi-core simulation platforms. Comparisons are also given between the lock free architecture and a leading commercial simulator running on the same Intel hardware

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Programming a Distributed System Using Shared Objects

    Get PDF
    Building the hardware for a high-performance distributed computer system is a lot easier than building its software. The authors describe a model for programming distributed systems based on abstract data types that can be replicated on all machines that need them. Read operations are done locally, without requiring network traffic. Writes can be done using a reliable broadcast algorithm if the hardware supports broadcasting; otherwise, a point-to-point protocol is used. The authors have built such a system based on the Amoeba microkernel, and implemented a language, Orca, on top of it. For Orca applications that have a high ratio of reads to writes, they measure good speedups on a system with 16 processors

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also
    • …
    corecore