299 research outputs found

    Optimizing Description Logic Reasoning for the Service Matchmaking and Composition

    Get PDF
    The Semantic Web is a recent initiative to expose semantically rich information associated with Web resources to build more intelligent Web-based systems. Recently, several projects have embraced this vision and there are several successful applications that combine the strengths of the Web and of semantic technologies. However, Semantic Web still lacks a technology, which would provide the needed scalability and integration with existing infrastructure. In this paper we present our ongoing work on a Semantic Web repository, which is capable of addressing complex schemas and answer queries over ontologies with large number of instances. We present the details of our approach and describe the underlying architecture of the system. We conclude with a performance evaluation, which compares the current state-of-the-art reasoners with our system

    A survey of large-scale reasoning on the Web of data

    Get PDF
    As more and more data is being generated by sensor networks, social media and organizations, the Webinterlinking this wealth of information becomes more complex. This is particularly true for the so-calledWeb of Data, in which data is semantically enriched and interlinked using ontologies. In this large anduncoordinated environment, reasoning can be used to check the consistency of the data and of asso-ciated ontologies, or to infer logical consequences which, in turn, can be used to obtain new insightsfrom the data. However, reasoning approaches need to be scalable in order to enable reasoning over theentire Web of Data. To address this problem, several high-performance reasoning systems, whichmainly implement distributed or parallel algorithms, have been proposed in the last few years. Thesesystems differ significantly; for instance in terms of reasoning expressivity, computational propertiessuch as completeness, or reasoning objectives. In order to provide afirst complete overview of thefield,this paper reports a systematic review of such scalable reasoning approaches over various ontologicallanguages, reporting details about the methods and over the conducted experiments. We highlight theshortcomings of these approaches and discuss some of the open problems related to performing scalablereasoning

    Approximate Assertional Reasoning Over Expressive Ontologies

    Get PDF
    In this thesis, approximate reasoning methods for scalable assertional reasoning are provided whose computational properties can be established in a well-understood way, namely in terms of soundness and completeness, and whose quality can be analyzed in terms of statistical measurements, namely recall and precision. The basic idea of these approximate reasoning methods is to speed up reasoning by trading off the quality of reasoning results against increased speed

    Design and Evaluation of Algorithms for Parallel Classification of Ontologies

    Get PDF
    Description Logics are a family of knowledge representation formalisms with formal semantics. In recent years, DLs have influenced the design and standardization of the Web Ontology Language OWL. The acceptance of OWL as a web standard has promoted the widespread utilization of DL ontologies on the web. One of the most frequently used inference services of description logic reasoners classifies all named classes of OWL ontologies into a subsumption hierarchy. Due to emerging OWL ontologies from the web community consisting of up to hundreds of thousand of named classes and the increasing availability of multi-processor and multi- or many-core computers, the need for parallelizing description logic inference services to achieve a better scalability is expected. The contribution of this thesis has two aspects. On a theoretical level, it first presents algorithms to construct a TBox in parallel, which are independent of a particular DL logic, however they sacrifice completeness. Then, a sound and complete algorithm for TBox classification in parallel is presented. In this algorithm all the subsumption relationships between concepts of a partition assigned to a single thread are found correctly, in other words, correctness of the TBox subsumption hierarchy is guaranteed. Thereafter, we provide an extension of the sound and complete algorithm which is used to handle TBox classification concurrently and more efficiently. This thesis also describes an optimization technique suitable for better partitioning the list of concepts to be inserted into the TBox. On a practical level, a running prototype, Parallel TBox Classifier was implemented for each generation of the classifier based on the above theoretical foundations, respectively. The Parallel TBox Classifier is used to evaluate the practical merit of the proposed algorithms as well as the effectiveness of the designed optimizations against existing state-of-the-art benchmarks. The empirical results illustrate that Parallel TBox Classifier outperforms the Sequential TBox Classifier on real world ontologies with a linear or superlinear speedup factor. Parallel TBox Classifier can form a basis to develop more efficient parallel classification techniques for real world ontologies with different sizes and DL complexities

    How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted?

    Get PDF
    Reasoner performance prediction of ontologies in OWL 2 language has been studied so far from different dimensions. One key aspect of these studies has been the prediction of how much time a particular task for a given ontology will consume. Several approaches have adopted different machine learning techniques to predict time consumption of ontologies already. However, these studies focused on capturing general aspects of the ontologies (i.e., mainly the complexity of their TBoxes), while paying little attention to ABox intensive ontologies. To address this issue, in this paper, we propose to improve the representativeness of ontology metrics by developing new metrics which focus on the ABox features of ontologies. Our experiments show that the proposed metrics contribute to overall prediction accuracy for all ontologies in general without causing side-effects
    • …
    corecore