1,638 research outputs found

    On the Convergence Analysis of Asynchronous Distributed Quadratic Programming via Dual Decomposition

    Full text link
    In this paper, we analyze the convergence as well as the rate of convergence of asynchronous distributed quadratic programming (QP) with dual decomposition technique. In general, distributed optimization requires synchronization of data at each iteration step due to the interdependency of data. This synchronization latency may incur a large amount of waiting time caused by an idle process during computation. We aim to attack this synchronization penalty in distributed QP problems by implementing asynchronous update of dual variable. The price to pay for adopting asynchronous computing algorithms is unpredictability of the solution, resulting in a tradeoff between speedup and accuracy. Thus, the convergence to an optimal solution is not guaranteed owing to the stochastic behavior of asynchrony. In this paper, we employ the switched system framework as an analysis tool to investigate the convergence of asynchronous distributed QP. This switched system will facilitate analysis on asynchronous distributed QP with dual decomposition, providing necessary and sufficient conditions for the mean square convergence. Also, we provide an analytic expression for the rate of convergence through the switched system, which enables performance analysis of asynchronous algorithms as compared with synchronous case. To verify the validity of the proposed methods, numerical examples are presented with an implementation of asynchronous parallel QP using OpenMP

    The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM

    Full text link
    We introduce the Stochastic Asynchronous Proximal Alternating Linearized Minimization (SAPALM) method, a block coordinate stochastic proximal-gradient method for solving nonconvex, nonsmooth optimization problems. SAPALM is the first asynchronous parallel optimization method that provably converges on a large class of nonconvex, nonsmooth problems. We prove that SAPALM matches the best known rates of convergence --- among synchronous or asynchronous methods --- on this problem class. We provide upper bounds on the number of workers for which we can expect to see a linear speedup, which match the best bounds known for less complex problems, and show that in practice SAPALM achieves this linear speedup. We demonstrate state-of-the-art performance on several matrix factorization problems

    An Asynchronous Distributed Framework for Large-scale Learning Based on Parameter Exchanges

    Full text link
    In many distributed learning problems, the heterogeneous loading of computing machines may harm the overall performance of synchronous strategies. In this paper, we propose an effective asynchronous distributed framework for the minimization of a sum of smooth functions, where each machine performs iterations in parallel on its local function and updates a shared parameter asynchronously. In this way, all machines can continuously work even though they do not have the latest version of the shared parameter. We prove the convergence of the consistency of this general distributed asynchronous method for gradient iterations then show its efficiency on the matrix factorization problem for recommender systems and on binary classification.Comment: 16 page

    An Inertial Parallel and Asynchronous Fixed-Point Iteration for Convex Optimization

    Full text link
    Two characteristics that make convex decomposition algorithms attractive are simplicity of operations and generation of parallelizable structures. In principle, these schemes require that all coordinates update at the same time, i.e., they are synchronous by construction. Introducing asynchronicity in the updates can resolve several issues that appear in the synchronous case, like load imbalances in the computations or failing communication links. However, and to the best of our knowledge, there are no instances of asynchronous versions of commonly-known algorithms combined with inertial acceleration techniques. In this work we propose an inertial asynchronous and parallel fixed-point iteration from which several new versions of existing convex optimization algorithms emanate. Departing from the norm that the frequency of the coordinates' updates should comply to some prior distribution, we propose a scheme where the only requirement is that the coordinates update within a bounded interval. We prove convergence of the sequence of iterates generated by the scheme at a linear rate. One instance of the proposed scheme is implemented to solve a distributed optimization load sharing problem in a smart grid setting and its superiority with respect to the non-accelerated version is illustrated

    DISROPT: a Python Framework for Distributed Optimization

    Full text link
    In this paper we introduce DISROPT, a Python package for distributed optimization over networks. We focus on cooperative set-ups in which an optimization problem must be solved by peer-to-peer processors (without central coordinators) that have access only to partial knowledge of the entire problem. To reflect this, agents in DISROPT are modeled as entities that are initialized with their local knowledge of the problem. Agents then run local routines and communicate with each other to solve the global optimization problem. A simple syntax has been designed to allow for an easy modeling of the problems. The package comes with many distributed optimization algorithms that are already embedded. Moreover, the package provides full-fledged functionalities for communication and local computation, which can be used to design and implement new algorithms. DISROPT is available at github.com/disropt/disropt under the GPL license, with a complete documentation and many examples

    Stochastic Primal-Dual Coordinate Method with Large Step Size for Composite Optimization with Composite Cone-constraints

    Full text link
    We introduce a stochastic coordinate extension of the first-order primal-dual method studied by Cohen and Zhu (1984) and Zhao and Zhu (2018) to solve Composite Optimization with Composite Cone-constraints (COCC). In this method, we randomly choose a block of variables based on the uniform distribution. The linearization and Bregman-like function (core function) to that randomly selected block allow us to get simple parallel primal-dual decomposition for COCC. We obtain almost surely convergence and O(1/t) expected convergence rate in this work. The high probability complexity bound is also derived in this paper.Comment: arXiv admin note: substantial text overlap with arXiv:1804.0080

    A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning

    Full text link
    We consider learning problems over training sets in which both, the number of training examples and the dimension of the feature vectors, are large. To solve these problems we propose the random parallel stochastic algorithm (RAPSA). We call the algorithm random parallel because it utilizes multiple parallel processors to operate on a randomly chosen subset of blocks of the feature vector. We call the algorithm stochastic because processors choose training subsets uniformly at random. Algorithms that are parallel in either of these dimensions exist, but RAPSA is the first attempt at a methodology that is parallel in both the selection of blocks and the selection of elements of the training set. In RAPSA, processors utilize the randomly chosen functions to compute the stochastic gradient component associated with a randomly chosen block. The technical contribution of this paper is to show that this minimally coordinated algorithm converges to the optimal classifier when the training objective is convex. Moreover, we present an accelerated version of RAPSA (ARAPSA) that incorporates the objective function curvature information by premultiplying the descent direction by a Hessian approximation matrix. We further extend the results for asynchronous settings and show that if the processors perform their updates without any coordination the algorithms are still convergent to the optimal argument. RAPSA and its extensions are then numerically evaluated on a linear estimation problem and a binary image classification task using the MNIST handwritten digit dataset.Comment: arXiv admin note: substantial text overlap with arXiv:1603.0678

    Asynchronous Distributed Optimization Via Randomized Dual Proximal Gradient

    Get PDF
    In this paper we consider distributed optimization problems in which the cost function is separable, i.e., a sum of possibly non-smooth functions all sharing a common variable, and can be split into a strongly convex term and a convex one. The second term is typically used to encode constraints or to regularize the solution. We propose a class of distributed optimization algorithms based on proximal gradient methods applied to the dual problem. We show that, by choosing suitable primal variable copies, the dual problem is itself separable when written in terms of conjugate functions, and the dual variables can be stacked into non-overlapping blocks associated to the computing nodes. We first show that a weighted proximal gradient on the dual function leads to a synchronous distributed algorithm with local dual proximal gradient updates at each node. Then, as main paper contribution, we develop asynchronous versions of the algorithm in which the node updates are triggered by local timers without any global iteration counter. The algorithms are shown to be proper randomized block-coordinate proximal gradient updates on the dual function

    Asynchronous Parallel Algorithms for Nonconvex Optimization

    Full text link
    We propose a new asynchronous parallel block-descent algorithmic framework for the minimization of the sum of a smooth nonconvex function and a nonsmooth convex one, subject to both convex and nonconvex constraints. The proposed framework hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of modern computational architectures and asynchronous implementations in a more faithful way than current state-of-the-art models. Other key features of the framework are: i) it covers in a unified way several specific solution methods; ii) it accommodates a variety of possible parallel computing architectures; and iii) it can deal with nonconvex constraints. Almost sure convergence to stationary solutions is proved, and theoretical complexity results are provided, showing nearly ideal linear speedup when the number of workers is not too large.Comment: This is the first part of a two-paper work. The second part can be found at: arXiv:1701.0490

    Stochastic Primal-Dual Coordinate Method for Nonlinear Convex Cone Programs

    Full text link
    Block coordinate descent (BCD) methods and their variants have been widely used in coping with large-scale nonconstrained optimization problems in many fields such as imaging processing, machine learning, compress sensing and so on. For problem with coupling constraints, Nonlinear convex cone programs (NCCP) are important problems with many practical applications, but these problems are hard to solve by using existing block coordinate type methods. This paper introduces a stochastic primal-dual coordinate (SPDC) method for solving large-scale NCCP. In this method, we randomly choose a block of variables based on the uniform distribution. The linearization and Bregman-like function (core function) to that randomly selected block allow us to get simple parallel primal-dual decomposition for NCCP. The sequence generated by our algorithm is proved almost surely converge to an optimal solution of primal problem. Two types of convergence rate with different probability (almost surely and expected) are also obtained. The probability complexity bound is also derived in this paper
    • …
    corecore