1,252 research outputs found

    Parallel Sort-Based Matching for Data Distribution Management on Shared-Memory Multiprocessors

    Full text link
    In this paper we consider the problem of identifying intersections between two sets of d-dimensional axis-parallel rectangles. This is a common problem that arises in many agent-based simulation studies, and is of central importance in the context of High Level Architecture (HLA), where it is at the core of the Data Distribution Management (DDM) service. Several realizations of the DDM service have been proposed; however, many of them are either inefficient or inherently sequential. These are serious limitations since multicore processors are now ubiquitous, and DDM algorithms -- being CPU-intensive -- could benefit from additional computing power. We propose a parallel version of the Sort-Based Matching algorithm for shared-memory multiprocessors. Sort-Based Matching is one of the most efficient serial algorithms for the DDM problem, but is quite difficult to parallelize due to data dependencies. We describe the algorithm and compute its asymptotic running time; we complete the analysis by assessing its performance and scalability through extensive experiments on two commodity multicore systems based on a dual socket Intel Xeon processor, and a single socket Intel Core i7 processor.Comment: Proceedings of the 21-th ACM/IEEE International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017). Best Paper Award @DS-RT 201

    Cache Equalizer: A Cache Pressure Aware Block Placement Scheme for Large-Scale Chip Multiprocessors

    Get PDF
    This paper describes Cache Equalizer (CE), a novel distributed cache management scheme for large scale chip multiprocessors (CMPs). Our work is motivated by large asymmetry in cache sets usages. CE decouples the physical locations of cache blocks from their addresses for the sake of reducing misses caused by destructive interferences. Temporal pressure at the on-chip last-level cache, is continuously collected at a group (comprised of cache sets) granularity, and periodically recorded at the memory controller to guide the placement process. An incoming block is consequently placed at a cache group that exhibits the minimum pressure. CE provides Quality of Service (QoS) by robustly offering better performance than the baseline shared NUCA cache. Simulation results using a full-system simulator demonstrate that CE outperforms shared NUCA caches by an average of 15.5% and by as much as 28.5% for the benchmark programs we examined. Furthermore, evaluations manifested the outperformance of CE versus related CMP cache designs

    Porting the Sisal functional language to distributed-memory multiprocessors

    Get PDF
    Parallel computing is becoming increasingly ubiquitous in recent years. The sizes of application problems continuously increase for solving real-world problems. Distributed-memory multiprocessors have been regarded as a viable architecture of scalable and economical design for building large scale parallel machines. While these parallel machines can provide computational capabilities, programming such large-scale machines is often very difficult due to many practical issues including parallelization, data distribution, workload distribution, and remote memory latency. This thesis proposes to solve the programmability and performance issues of distributed-memory machines using the Sisal functional language. The programs written in Sisal will be automatically parallelized, scheduled and run on distributed-memory multiprocessors with no programmer intervention. Specifically, the proposed approach consists of the following steps. Given a program written in Sisal, the front end Sisal compiler generates a directed acyclic graph(DAG) to expose parallelism in the program. The DAG is partitioned and scheduled based on loop parallelism. The scheduled DAG is then translated to C programs with machine specific parallel constructs. The parallel C programs are finally compiled by the target machine specific compilers to generate executables. A distributed-memory parallel machine, the 80-processor ETL EM-X, has been chosen to perform experiments. The entire procedure has been implemented on the EMX multiprocessor. Four problems are selected for experiments: bitonic sorting, search, dot-product and Fast Fourier Transform. Preliminary execution results indicate that automatic parallelization of the Sisal programs based on loop parallelism is effective. The speedup for these four problems is ranging from 17 to 60 on a 64-processor EM-X. Preliminary experimental results further indicate that programming distributed-memory multiprocessors using a functional language indeed frees the programmers from lowl-evel programming details while allowing them to focus on algorithmic performance improvement

    Modeling Algorithm Performance on Highly-threaded Many-core Architectures

    Get PDF
    The rapid growth of data processing required in various arenas of computation over the past decades necessitates extensive use of parallel computing engines. Among those, highly-threaded many-core machines, such as GPUs have become increasingly popular for accelerating a diverse range of data-intensive applications. They feature a large number of hardware threads with low-overhead context switches to hide the memory access latencies and therefore provide high computational throughput. However, understanding and harnessing such machines places great challenges on algorithm designers and performance tuners due to the complex interaction of threads and hierarchical memory subsystems of these machines. The achieved performance jointly depends on the parallelism exploited by the algorithm, the effectiveness of latency hiding, and the utilization of multiprocessors (occupancy). Contemporary work tries to model the performance of GPUs from various aspects with different emphasis and granularity. However, no model considers all of these factors together at the same time. This dissertation presents an analytical framework that jointly addresses parallelism, latency-hiding, and occupancy for both theoretical and empirical performance analysis of algorithms on highly-threaded many-core machines so that it can guide both algorithm design and performance tuning. In particular, this framework not only helps to explore and reduce the runtime configuration space for tuning kernel execution on GPUs, but also reflects performance bottlenecks and predicts how the runtime will trend as the problem and other parameters scale. The framework consists of a pair of analytical models with one focusing on higher-level asymptotic algorithm performance on GPUs and the other one emphasizing lower-level details about scheduling and runtime configuration. Based on the two models, we have conducted extensive analysis of a large set of algorithms. Two analysis provides interesting results and explains previously unexplained data. In addition, the two models are further bridged and combined as a consistent framework. The framework is able to provide an end-to-end methodology for algorithm design, evaluation, comparison, implementation, and prediction of real runtime on GPUs fairly accurately. To demonstrate the viability of our methods, the models are validated through data from implementations of a variety of classic algorithms, including hashing, Bloom filters, all-pairs shortest path, matrix multiplication, FFT, merge sort, list ranking, string matching via suffix tree/array, etc. We evaluate the models\u27 performance across a wide spectrum of parameters, data values, and machines. The results indicate that the models can be effectively used for algorithm performance analysis and runtime prediction on highly-threaded many-core machines

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council

    Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems

    Get PDF
    Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added to these systems, a point is reached where their performance quickly degrades. The performance of a von Neumann machine is limited by the bandwidth between memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the computer. In this scheme the memory becomes the processor (a smart memory ). This paper highlights the relationship between three representative AI application domains, namely knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations. Three machines, covering a wide range of fundamental properties of parallel processors, namely module granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterflyswitch machine)

    A parallel implementation of a multisensor feature-based range-estimation method

    Get PDF
    There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer
    corecore