46,003 research outputs found

    Fast and accurate frequency-dependent radiation transport for hydrodynamics simulations in massive star formation

    Full text link
    Context: Radiative feedback plays a crucial role in the formation of massive stars. The implementation of a fast and accurate description of the proceeding thermodynamics in pre-stellar cores and evolving accretion disks is therefore a main effort in current hydrodynamics simulations. Aims: We introduce our newly implemented three-dimensional frequency dependent radiation transport algorithm for hydrodynamics simulations of spatial configurations with a dominant central source. Methods: The module combines the advantage of the speed of an approximate Flux Limited Diffusion (FLD) solver with the high accuracy of a frequency dependent first order ray-tracing routine. Results: We prove the viability of the scheme in a standard radiation benchmark test compared to a full frequency dependent Monte-Carlo based radiative transfer code. The setup includes a central star, a circumstellar flared disk, as well as an envelope. The test is performed for different optical depths. Considering the frequency dependence of the stellar irradiation, the temperature distributions can be described precisely in the optically thin, thick, and irradiated transition regions. Resulting radiative forces onto dust grains are reproduced with high accuracy. The achievable parallel speedup of the method imposes no restriction on further radiative (magneto-) hydrodynamics simulations. Conclusions: The proposed approximate radiation transport method enables frequency dependent radiation hydrodynamics studies of the evolution of pre-stellar cores and circumstellar accretion disks around an evolving massive star in a highly efficient and accurate manner.Comment: 16 pages, 11 figure

    A public code for general relativistic, polarised radiative transfer around spinning black holes

    Full text link
    Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, grtrans, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in Fortran 90 and efficiently parallelises with OpenMP, and the full code and several components have Python interfaces. We describe several tests which are used for verifiying the code, and we compare the results for polarised thin accretion disc and semi-analytic jet problems with those from the literature as examples of its use. Along the way, we provide accurate fitting functions for polarised synchrotron emission and transfer coefficients from thermal and power law distribution functions, and compare results from numerical integration and quadrature solutions of the polarised radiative transfer equations. We also show that all transfer coefficients can play an important role in predicted images and polarisation maps of the Galactic center black hole, Sgr A*, at submillimetre wavelengths.Comment: 22 pages, 12 figures, submitted to MNRAS. code available at: github.com/jadexter/grtran

    TRAPHIC - Radiative Transfer for Smoothed Particle Hydrodynamics Simulations

    Full text link
    We present TRAPHIC, a novel radiative transfer scheme for Smoothed Particle Hydrodynamics (SPH) simulations. TRAPHIC is designed for use in simulations exhibiting a wide dynamic range in physical length scales and containing a large number of light sources. It is adaptive both in space and in angle and can be employed for application on distributed memory machines. The commonly encountered computationally expensive scaling with the number of light sources in the simulation is avoided by introducing a source merging procedure. The (time-dependent) radiative transfer equation is solved by tracing individual photon packets in an explicitly photon-conserving manner directly on the unstructured grid traced out by the set of SPH particles. To accomplish directed transport of radiation despite the irregular spatial distribution of the SPH particles, photons are guided inside cones. We present and test a parallel numerical implementation of TRAPHIC in the SPH code GADGET-2, specified for the transport of mono-chromatic hydrogen-ionizing radiation. The results of the tests are in excellent agreement with both analytic solutions and results obtained with other state-of-the-art radiative transfer codes.Comment: 31 pages, 20 figures. Accepted for publication in MNRAS. Revised version includes many clarifications and a new time-dependent radiative transfer calculation (fig. 19

    The Failure of Monte Carlo Radiative Transfer at Medium to High Optical Depths

    Get PDF
    Computer simulations of photon transport through an absorbing and/or scattering medium form an important research tool in astrophysics. Nearly all software codes performing such simulations for three-dimensional geometries employ the Monte Carlo radiative transfer method, including various forms of biasing to accelerate the calculations. Because of the probabilistic nature of the Monte Carlo technique, the outputs are inherently noisy, but it is often assumed that the average values provide the physically correct result. We show that this assumption is not always justified. Specifically, we study the intensity of radiation penetrating an infinite, uniform slab of material that absorbs and scatters the radiation with equal probability. The basic Monte Carlo radiative transfer method, without any biasing mechanisms, starts to break down for transverse optical depths above ~20 because so few of the simulated photon packets reach the other side of the slab. When including biasing techniques such as absorption/scattering splitting and path length stretching, the simulated photon packets do reach the other side of the slab but the biased weights do not necessarily add up to the correct solution. While the noise levels seem to be acceptable, the average values sometimes severely underestimate the correct solution. Detecting these anomalies requires the judicious application of statistical tests, similar to those used in the field of nuclear particle transport, possibly in combination with convergence tests employing consecutively larger numbers of photon packets. In any case, for transverse optical depths above ~75 the Monte Carlo methods used in our study fail to solve the one-dimensional slab problem, implying the need for approximations such as a modified random walk.Comment: Accepted for publication in the ApJ; 13 pages, 6 figure

    Adaptive multiscale methods for 3D streamer discharges in air

    Get PDF
    We discuss spatially and temporally adaptive implicit-explicit (IMEX) methods for parallel simulations of three-dimensional fluid streamer discharges in atmospheric air. We examine strategies for advancing the fluid equations and elliptic transport equations (e.g. Poisson) with different time steps, synchronizing them on a global physical time scale which is taken to be proportional to the dielectric relaxation time. The use of a longer time step for the electric field leads to numerical errors that can be diagnosed, and we quantify the conditions where this simplification is valid. Likewise, using a three-term Helmholtz model for radiative transport, the same error diagnostics show that the radiative transport equations do not need to be resolved on time scales finer than the dielectric relaxation time. Elliptic equations are bottlenecks for most streamer simulation codes, and the results presented here potentially provide computational savings. Finally, a computational example of 3D branching streamers in a needle-plane geometry that uses up to 700 million grid cells is presented.Comment: 17 pages, 5 figure
    • …
    corecore