3,377 research outputs found

    Fractal model and Lattice Boltzmann Method for Characterization of Non-Darcy Flow in Rough Fractures.

    Get PDF
    The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass-Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures

    Preferential Paths of Air-water Two-phase Flow in Porous Structures with Special Consideration of Channel Thickness Effects.

    Get PDF
    Accurate understanding and predicting the flow paths of immiscible two-phase flow in rocky porous structures are of critical importance for the evaluation of oil or gas recovery and prediction of rock slides caused by gas-liquid flow. A 2D phase field model was established for compressible air-water two-phase flow in heterogenous porous structures. The dynamic characteristics of air-water two-phase interface and preferential paths in porous structures were simulated. The factors affecting the path selection of two-phase flow in porous structures were analyzed. Transparent physical models of complex porous structures were prepared using 3D printing technology. Tracer dye was used to visually observe the flow characteristics and path selection in air-water two-phase displacement experiments. The experimental observations agree with the numerical results used to validate the accuracy of phase field model. The effects of channel thickness on the air-water two-phase flow behavior and paths in porous structures were also analyzed. The results indicate that thick channels can induce secondary air flow paths due to the increase in flow resistance; consequently, the flow distribution is different from that in narrow channels. This study provides a new reference for quantitatively analyzing multi-phase flow and predicting the preferential paths of immiscible fluids in porous structures

    Use of groundwater lifetime expectancy for the performance assessment of a deep geologic waste repository: 1. Theory, illustrations, and implications

    Full text link
    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. The risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The utility of the method is illustrated by means of analytical and numerical examples, which focus on the effect of fracture networks on the uncertainty of evaluated lifetime expectancy.Comment: 11 pages, 8 figures; Water Resources Research, Vol. 44, 200

    Regional Flow Simulation in Fractured Aquifers Using Stress-Dependent Parameters

    Get PDF
    A model function relating effective stress to fracture permeability is developed from Hooke's law, implemented in the tensorial form of Darcy's law, and used to evaluate discharge rates and pressure distributions at regional scales. The model takes into account elastic and statistical fracture parameters, and is able to simulate real stress-dependent permeabilities from laboratory to field studies. This modeling approach gains in phenomenology in comparison to the classical ones because the permeability tensors may vary in both strength and principal directions according to effective stresses. Moreover this method allows evaluation of the fracture porosity changes, which are then translated into consolidation of the medium.Comment: 10 pages, 7 figures, submitted to Ground Water 201

    A double scale methodology to investigate flow in karst fractured media via numerical analysis. The Cassino plain case study (Central Apennine, Italy)

    Get PDF
    A methodology to evaluate the hydraulic conductivity of the karstmedia at a regional scale has been proposed, combining pumping tests and the hydrostructural approach, evaluating the hydraulic conductivity of fractured rocks at the block scale. Obtaining hydraulic conductivity values, calibrated at a regional scale, a numerical flow model of the Cassino area has been developed, to validate the methodology and investigate the ambiguity, related to a nonunique hydrogeological conceptual model. The Cassino plain is an intermontane basin with outstanding groundwater resources.The plain is surrounded by karst hydrostructures that feed the Gari Springs and Peccia Springs. Since the 1970s, the study area was the object of detailed investigations with an exceptional density of water-wells and piezometers, representing one of the most important karst study-sites in central-southern Italy. Application of the proposed methodology investigates the hydraulic conductivity tensor at local and regional scales, reawakening geological and hydrogeological issues of a crucial area and tackling the limits of the continuum modelling in karst medi
    • …
    corecore