1,950 research outputs found

    Reinforcement learning based local search for grouping problems: A case study on graph coloring

    Get PDF
    Grouping problems aim to partition a set of items into multiple mutually disjoint subsets according to some specific criterion and constraints. Grouping problems cover a large class of important combinatorial optimization problems that are generally computationally difficult. In this paper, we propose a general solution approach for grouping problems, i.e., reinforcement learning based local search (RLS), which combines reinforcement learning techniques with descent-based local search. The viability of the proposed approach is verified on a well-known representative grouping problem (graph coloring) where a very simple descent-based coloring algorithm is applied. Experimental studies on popular DIMACS and COLOR02 benchmark graphs indicate that RLS achieves competitive performances compared to a number of well-known coloring algorithms

    Monte Carlo algorithms are very effective in finding the largest independent set in sparse random graphs

    Full text link
    The effectiveness of stochastic algorithms based on Monte Carlo dynamics in solving hard optimization problems is mostly unknown. Beyond the basic statement that at a dynamical phase transition the ergodicity breaks and a Monte Carlo dynamics cannot sample correctly the probability distribution in times linear in the system size, there are almost no predictions nor intuitions on the behavior of this class of stochastic dynamics. The situation is particularly intricate because, when using a Monte Carlo based algorithm as an optimization algorithm, one is usually interested in the out of equilibrium behavior which is very hard to analyse. Here we focus on the use of Parallel Tempering in the search for the largest independent set in a sparse random graph, showing that it can find solutions well beyond the dynamical threshold. Comparison with state-of-the-art message passing algorithms reveals that parallel tempering is definitely the algorithm performing best, although a theory explaining its behavior is still lacking.Comment: 14 pages, 12 figure
    corecore