606 research outputs found

    Distributed Big-Data Optimization via Block-Iterative Convexification and Averaging

    Full text link
    In this paper, we study distributed big-data nonconvex optimization in multi-agent networks. We consider the (constrained) minimization of the sum of a smooth (possibly) nonconvex function, i.e., the agents' sum-utility, plus a convex (possibly) nonsmooth regularizer. Our interest is in big-data problems wherein there is a large number of variables to optimize. If treated by means of standard distributed optimization algorithms, these large-scale problems may be intractable, due to the prohibitive local computation and communication burden at each node. We propose a novel distributed solution method whereby at each iteration agents optimize and then communicate (in an uncoordinated fashion) only a subset of their decision variables. To deal with non-convexity of the cost function, the novel scheme hinges on Successive Convex Approximation (SCA) techniques coupled with i) a tracking mechanism instrumental to locally estimate gradient averages; and ii) a novel block-wise consensus-based protocol to perform local block-averaging operations and gradient tacking. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Finally, numerical results show the effectiveness of the proposed algorithm and highlight how the block dimension impacts on the communication overhead and practical convergence speed

    Distributed Big-Data Optimization via Block Communications

    Get PDF
    We study distributed multi-agent large-scale optimization problems, wherein the cost function is composed of a smooth possibly nonconvex sum-utility plus a DC (Difference-of-Convex) regularizer. We consider the scenario where the dimension of the optimization variables is so large that optimizing and/or transmitting the entire set of variables could cause unaffordable computation and communication overhead. To address this issue, we propose the first distributed algorithm whereby agents optimize and communicate only a portion of their local variables. The scheme hinges on successive convex approximation (SCA) to handle the nonconvexity of the objective function, coupled with a novel block-signal tracking scheme, aiming at locally estimating the average of the agents' gradients. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Numerical results on a sparse regression problem show the effectiveness of the proposed algorithm and the impact of the block size on its practical convergence speed and communication cost

    A Parallel Best-Response Algorithm with Exact Line Search for Nonconvex Sparsity-Regularized Rank Minimization

    Get PDF
    In this paper, we propose a convergent parallel best-response algorithm with the exact line search for the nondifferentiable nonconvex sparsity-regularized rank minimization problem. On the one hand, it exhibits a faster convergence than subgradient algorithms and block coordinate descent algorithms. On the other hand, its convergence to a stationary point is guaranteed, while ADMM algorithms only converge for convex problems. Furthermore, the exact line search procedure in the proposed algorithm is performed efficiently in closed-form to avoid the meticulous choice of stepsizes, which is however a common bottleneck in subgradient algorithms and successive convex approximation algorithms. Finally, the proposed algorithm is numerically tested.Comment: Submitted to IEEE ICASSP 201

    Parallel Selective Algorithms for Big Data Optimization

    Full text link
    We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss- Seidel (i.e., sequential) ones, as well as virtually all possibilities "in between" with only a subset of variables updated at each iteration. Our theoretical convergence results improve on existing ones, and numerical results on LASSO, logistic regression, and some nonconvex quadratic problems show that the new method consistently outperforms existing algorithms.Comment: This work is an extended version of the conference paper that has been presented at IEEE ICASSP'14. The first and the second author contributed equally to the paper. This revised version contains new numerical results on non convex quadratic problem

    Successive Convex Approximation Algorithms for Sparse Signal Estimation with Nonconvex Regularizations

    Full text link
    In this paper, we propose a successive convex approximation framework for sparse optimization where the nonsmooth regularization function in the objective function is nonconvex and it can be written as the difference of two convex functions. The proposed framework is based on a nontrivial combination of the majorization-minimization framework and the successive convex approximation framework proposed in literature for a convex regularization function. The proposed framework has several attractive features, namely, i) flexibility, as different choices of the approximate function lead to different type of algorithms; ii) fast convergence, as the problem structure can be better exploited by a proper choice of the approximate function and the stepsize is calculated by the line search; iii) low complexity, as the approximate function is convex and the line search scheme is carried out over a differentiable function; iv) guaranteed convergence to a stationary point. We demonstrate these features by two example applications in subspace learning, namely, the network anomaly detection problem and the sparse subspace clustering problem. Customizing the proposed framework by adopting the best-response type approximation, we obtain soft-thresholding with exact line search algorithms for which all elements of the unknown parameter are updated in parallel according to closed-form expressions. The attractive features of the proposed algorithms are illustrated numerically.Comment: submitted to IEEE Journal of Selected Topics in Signal Processing, special issue in Robust Subspace Learnin

    Distributed Dictionary Learning

    Full text link
    The paper studies distributed Dictionary Learning (DL) problems where the learning task is distributed over a multi-agent network with time-varying (nonsymmetric) connectivity. This formulation is relevant, for instance, in big-data scenarios where massive amounts of data are collected/stored in different spatial locations and it is unfeasible to aggregate and/or process all the data in a fusion center, due to resource limitations, communication overhead or privacy considerations. We develop a general distributed algorithmic framework for the (nonconvex) DL problem and establish its asymptotic convergence. The new method hinges on Successive Convex Approximation (SCA) techniques coupled with i) a gradient tracking mechanism instrumental to locally estimate the missing global information; and ii) a consensus step, as a mechanism to distribute the computations among the agents. To the best of our knowledge, this is the first distributed algorithm with provable convergence for the DL problem and, more in general, bi-convex optimization problems over (time-varying) directed graphs

    A randomized primal distributed algorithm for partitioned and big-data non-convex optimization

    Full text link
    In this paper we consider a distributed optimization scenario in which the aggregate objective function to minimize is partitioned, big-data and possibly non-convex. Specifically, we focus on a set-up in which the dimension of the decision variable depends on the network size as well as the number of local functions, but each local function handled by a node depends only on a (small) portion of the entire optimization variable. This problem set-up has been shown to appear in many interesting network application scenarios. As main paper contribution, we develop a simple, primal distributed algorithm to solve the optimization problem, based on a randomized descent approach, which works under asynchronous gossip communication. We prove that the proposed asynchronous algorithm is a proper, ad-hoc version of a coordinate descent method and thus converges to a stationary point. To show the effectiveness of the proposed algorithm, we also present numerical simulations on a non-convex quadratic program, which confirm the theoretical results
    • …
    corecore