39,575 research outputs found

    Pay One, Get Hundreds for Free: Reducing Cloud Costs through Shared Query Execution

    Full text link
    Cloud-based data analysis is nowadays common practice because of the lower system management overhead as well as the pay-as-you-go pricing model. The pricing model, however, is not always suitable for query processing as heavy use results in high costs. For example, in query-as-a-service systems, where users are charged per processed byte, collections of queries accessing the same data frequently can become expensive. The problem is compounded by the limited options for the user to optimize query execution when using declarative interfaces such as SQL. In this paper, we show how, without modifying existing systems and without the involvement of the cloud provider, it is possible to significantly reduce the overhead, and hence the cost, of query-as-a-service systems. Our approach is based on query rewriting so that multiple concurrent queries are combined into a single query. Our experiments show the aggregated amount of work done by the shared execution is smaller than in a query-at-a-time approach. Since queries are charged per byte processed, the cost of executing a group of queries is often the same as executing a single one of them. As an example, we demonstrate how the shared execution of the TPC-H benchmark is up to 100x and 16x cheaper in Amazon Athena and Google BigQuery than using a query-at-a-time approach while achieving a higher throughput

    High performance subgraph mining in molecular compounds

    Get PDF
    Structured data represented in the form of graphs arises in several fields of the science and the growing amount of available data makes distributed graph mining techniques particularly relevant. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-initiated, load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening dataset, where the approach attains close-to linear speedup in a network of workstations
    • …
    corecore