73 research outputs found

    Time Critical Mass Evacuation Simulation Combining A Multi- Agent System and High-Performance Computing

    Get PDF
    This chapter presents an application of multi-agent systems to simulate tsunami-triggered mass evacuations of large urban areas. The main objective is to quantitatively evaluate various strategies to accelerate evacuation in case of a tsunami with a short arrival time, taking most influential factors into account. Considering the large number of lives in fatal danger, instead of widely used simple agents in 1D networks, we use a high-resolution model of environment and complex agents so that wide range of influencing factors can be taken into account. A brief description of the multi-agent system is provided using a mathematical framework as means to easily and unambiguously refer to the main components of the system. The environment of the multi-agent system, which mimics the physical world of evacuees, is modelled as a hybrid of a high-resolution grid and a graph connecting traversable spaces. This hybrid of raster and vector data structures enables modelling large domain in a scalable manner. The agents, which mimic the heterogeneous crowd of evacuees, are composed of different combinations of basic constituent functions for modelling interaction with each other and environment, decision-making, etc. The results of tuning and validating of constituent functions for pedestrian-pedestrian, car-car and car-pedestrian interactions are presented. A scalable high-performance computing (HPC) extension to address the high-computational demand of complex agents and high-resolution model of environment is briefly explained. Finally, demonstrative applications that highlight the need for including sub-meter details in the environment, different modes of evacuation and behavioural differences are presented

    スケーラブルなマルチエージェント大都市域避難行動シミュレータの自動車の考慮に重点をおいた拡張と適用

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 マッデゲダラ ラリス, 東京大学教授 堀 宗朗, 東京大学教授 大口 敬, 東京大学教授 堀田 昌英, 東京大学准教授 市村 強, 東京大学准教授 柳澤 大地University of Tokyo(東京大学

    Faculty of Engineering and Design. Research Review

    Get PDF
    STUDENTS AND ACADEMICS - This publication introduces you to the department or school and then each faculty member’s research areas, research applications, and their most recent activities. A comprehensive index can be found at the back of this publication to help guide you by specific areas of interest, as well as point out interdisciplinary topics and researchers. INDUSTRY LEADERS - This publication includes information regarding specific facilities, labs, and research areas of departments and schools as well as individual faculty members and researchers. A comprehensive index can be found at the back of this publication to help guide you by specific areas of interest, as well as point out interdisciplinary topics and researchers

    Sensor web geoprocessing on the grid

    Get PDF
    Recent standardisation initiatives in the fields of grid computing and geospatial sensor middleware provide an exciting opportunity for the composition of large scale geospatial monitoring and prediction systems from existing components. Sensor middleware standards are paving the way for the emerging sensor web which is envisioned to make millions of geospatial sensors and their data publicly accessible by providing discovery, task and query functionality over the internet. In a similar fashion, concurrent development is taking place in the field of grid computing whereby the virtualisation of computational and data storage resources using middleware abstraction provides a framework to share computing resources. Sensor web and grid computing share a common vision of world-wide connectivity and in their current form they are both realised using web services as the underlying technological framework. The integration of sensor web and grid computing middleware using open standards is expected to facilitate interoperability and scalability in near real-time geoprocessing systems. The aim of this thesis is to develop an appropriate conceptual and practical framework in which open standards in grid computing, sensor web and geospatial web services can be combined as a technological basis for the monitoring and prediction of geospatial phenomena in the earth systems domain, to facilitate real-time decision support. The primary topic of interest is how real-time sensor data can be processed on a grid computing architecture. This is addressed by creating a simple typology of real-time geoprocessing operations with respect to grid computing architectures. A geoprocessing system exemplar of each geoprocessing operation in the typology is implemented using contemporary tools and techniques which provides a basis from which to validate the standards frameworks and highlight issues of scalability and interoperability. It was found that it is possible to combine standardised web services from each of these aforementioned domains despite issues of interoperability resulting from differences in web service style and security between specifications. A novel integration method for the continuous processing of a sensor observation stream is suggested in which a perpetual processing job is submitted as a single continuous compute job. Although this method was found to be successful two key challenges remain; a mechanism for consistently scheduling real-time jobs within an acceptable time-frame must be devised and the tradeoff between efficient grid resource utilisation and processing latency must be balanced. The lack of actual implementations of distributed geoprocessing systems built using sensor web and grid computing has hindered the development of standards, tools and frameworks in this area. This work provides a contribution to the small number of existing implementations in this field by identifying potential workflow bottlenecks in such systems and gaps in the existing specifications. Furthermore it sets out a typology of real-time geoprocessing operations that are anticipated to facilitate the development of real-time geoprocessing software.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC) : School of Civil Engineering & Geosciences, Newcastle UniversityGBUnited Kingdo
    corecore