285 research outputs found

    Reduction from Non-Unique Games to Boolean Unique Games

    Get PDF
    We reduce the problem of proving a "Boolean Unique Games Conjecture" (with gap 1-? vs. 1-C?, for any C > 1, and sufficiently small ? > 0) to the problem of proving a PCP Theorem for a certain non-unique game. In a previous work, Khot and Moshkovitz suggested an inefficient candidate reduction (i.e., without a proof of soundness). The current work is the first to provide an efficient reduction along with a proof of soundness. The non-unique game we reduce from is similar to non-unique games for which PCP theorems are known. Our proof relies on a new concentration theorem for functions in Gaussian space that are restricted to a random hyperplane. We bound the typical Euclidean distance between the low degree part of the restriction of the function to the hyperplane and the restriction to the hyperplane of the low degree part of the function

    A New View on Worst-Case to Average-Case Reductions for NP Problems

    Full text link
    We study the result by Bogdanov and Trevisan (FOCS, 2003), who show that under reasonable assumptions, there is no non-adaptive worst-case to average-case reduction that bases the average-case hardness of an NP-problem on the worst-case complexity of an NP-complete problem. We replace the hiding and the heavy samples protocol in [BT03] by employing the histogram verification protocol of Haitner, Mahmoody and Xiao (CCC, 2010), which proves to be very useful in this context. Once the histogram is verified, our hiding protocol is directly public-coin, whereas the intuition behind the original protocol inherently relies on private coins

    Anchoring games for parallel repetition

    Get PDF
    Two major open problems regarding the parallel repetition of games are whether an analogue of Raz's parallel-repetition theorem holds for (a) games with more than two players, and (b) games with quantum players using entanglement. We make progress on both problems: we introduce a class of games we call anchored, and prove exponential-decay parallel repetition theorems for anchored games in the multiplayer and entangled-player settings. We introduce a simple transformation on games called anchoring and show that this transformation turns any game into an anchored game. Together, our parallel repetition theorem and our anchoring transformation provide a simple and efficient hardness-amplification technique in both the classical multiplayer and quantum settings

    Rationality and Efficient Verifiable Computation

    Full text link
    In this thesis, we study protocols for delegating computation in a model where one of the parties is rational. In our model, a delegator outsources the computation of a function f on input x to a worker, who receives a (possibly monetary) reward. Our goal is to design very efficient delegation schemes where a worker is economically incentivized to provide the correct result f(x). In this work we strive for not relying on cryptographic assumptions, in particular our results do not require the existence of one-way functions. We provide several results within the framework of rational proofs introduced by Azar and Micali (STOC 2012).We make several contributions to efficient rational proofs for general feasible computations. First, we design schemes with a sublinear verifier with low round and communication complexity for space-bounded computations. Second, we provide evidence, as lower bounds, against the existence of rational proofs: with logarithmic communication and polylogarithmic verification for P and with polylogarithmic communication for NP. We then move to study the case where a delegator outsources multiple inputs. First, we formalize an extended notion of rational proofs for this scenario (sequential composability) and we show that existing schemes do not satisfy it. We show how these protocols incentivize workers to provide many ``fast\u27\u27 incorrect answers which allow them to solve more problems and collect more rewards. We then design a d-rounds rational proof for sufficiently ``regular\u27\u27 arithmetic circuit of depth d = O(log(n)) with sublinear verification. We show, that under certain cost assumptions, our scheme is sequentially composable, i.e. it can be used to delegate multiple inputs. We finally show that our scheme for space-bounded computations is also sequentially composable under certain cost assumptions. In the last part of this thesis we initiate the study of Fine Grained Secure Computation: i.e. the construction of secure computation primitives against ``moderately complex adversaries. Such fine-grained protocols can be used to obtain sequentially composable rational proofs. We present definitions and constructions for compact Fully Homomorphic Encryption and Verifiable Computation secure against (non-uniform) NC1 adversaries. Our results hold under a widely believed separation assumption implied by L ≠NC1 . We also present two application scenarios for our model: (i) hardware chips that prove their own correctness, and (ii) protocols against rational adversaries potentially relevant to the Verifier\u27s Dilemma in smart-contracts transactions such as Ethereum

    Proceedings of the 3rd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 3rd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number

    Get PDF
    We investigate the locality number, a recently introduced structural parameter for strings (with applications in pattern matching with variables), and its connection to two important graph-parameters, cutwidth and pathwidth. These connections allow us to show that computing the locality number is NP-hard but fixed-parameter tractable (when the locality number or the alphabet size is treated as a parameter), and can be approximated with ratio O(sqrt{log{opt}} log n). As a by-product, we also relate cutwidth via the locality number to pathwidth, which is of independent interest, since it improves the best currently known approximation algorithm for cutwidth. In addition to these main results, we also consider the possibility of greedy-based approximation algorithms for the locality number

    Stability of Homomorphisms, Coverings and Cocycles I: Equivalence

    Full text link
    This paper is motivated by recent developments in group stability, high dimensional expansion, local testability of error correcting codes and topological property testing. In Part I, we formulate and motivate three stability problems: 1. Homomorphism stability: Are almost homomorphisms close to homomorphisms? 2. Covering stability: Are almost coverings of a cell complex close to genuine coverings of it? 3. Cocycle stability: Are 1-cochains whose coboundary is small close to 1-cocycles? We then prove that these three problems are equivalent.Comment: 32 page
    • …
    corecore