85,018 research outputs found

    Extending a multi-set relational algebra to a parallel environment

    Get PDF
    Parallel database systems will very probably be the future for high-performance data-intensive applications. In the past decade, many parallel database systems have been developed, together with many languages and approaches to specify operations in these systems. A common background is still missing, however. This paper proposes an extended relational algebra for this purpose, based on the well-known standard relational algebra. The extended algebra provides both complete database manipulation language features, and data distribution and process allocation primitives to describe parallelism. It is defined in terms of multi-sets of tuples to allow handling of duplicates and to obtain a close connection to the world of high-performance data processing. Due to its algebraic nature, the language is well suited for optimization and parallelization through expression rewriting. The proposed language can be used as a database manipulation language on its own, as has been done in the PRISMA parallel database project, or as a formal basis for other languages, like SQL

    A Genetic Programming Framework for Two Data Mining Tasks: Classification and Generalized Rule Induction

    Get PDF
    This paper proposes a genetic programming (GP) framework for two major data mining tasks, namely classification and generalized rule induction. The framework emphasizes the integration between a GP algorithm and relational database systems. In particular, the fitness of individuals is computed by submitting SQL queries to a (parallel) database server. Some advantages of this integration from a data mining viewpoint are scalability, data-privacy control and automatic parallelization

    On Parallel Join Processing in Object-Relational Database Systems

    Get PDF
    So far only few performance studies on parallel object-relational database systems are available. In particular, the relative performance of relational vs. reference-based join processing in a parallel environment has not been investigated sufficiently. We present a performance study based on the BUCKY benchmark to compare parallel join processing using reference attributes with relational hash- and merge-join algorithms. In addition, we propose a data allocation scheme especially suited for object hierarchies and set-valued attributes

    Pattern based processing of XPath queries

    Get PDF
    As the popularity of areas including document storage and distributed systems continues to grow, the demand for high performance XML databases is increasingly evident. This has led to a number of research eorts aimed at exploiting the maturity of relational database systems in order to in- crease XML query performance. In our approach, we use an index structure based on a metamodel for XML databases combined with relational database technology to facilitate fast access to XML document elements. The query process involves transforming XPath expressions to SQL which can be executed over our optimised query engine. As there are many dierent types of XPath queries, varying processing logic may be applied to boost performance not only to indi- vidual XPath axes, but across multiple axes simultaneously. This paper describes a pattern based approach to XPath query processing, which permits the execution of a group of XPath location steps in parallel

    Analytical response time estimation in parallel relational database systems

    Get PDF
    Techniques for performance estimation in parallel database systems are well established for parameters such as throughput, bottlenecks and resource utilisation. However, response time estimation is a complex activity which is difficult to predict and has attracted research for a number of years. Simulation is one option for predicting response time but this is a costly process. Analytical modelling is a less expensive option but requires approximations and assumptions about the queueing networks built up in real parallel database machines which are often questionable and few of the papers on analytical approaches are backed by results from validation against real machines. This paper describes a new analytical approach for response time estimation that is based on a detailed study of different approaches and assumptions. The approach has been validated against two commercial parallel DBMSs running on actual parallel machines and is shown to produce acceptable accuracy

    Performance Optimizations of NoSQL Databases in Distributed Systems

    Get PDF
    Databases store information about a system and provide a mechanism for data to be accessed and manipulated. While advancements in the 1970s provided a relational database model that has persisted to this day, web-scale era mass data needs surfacing in the 1990s and the early 2000s revealed limitations in the scalability of the relational model. As systems grew and transitioned into distributed architectures to support mass data storage and parallel processing, a complete overhaul of distributed computing technologies evolved that fundamentally departed from the relational data model in favor of the NoSQL data model. The course of this research details the scaling problems encountered by relational databases and the NoSQL solutions that made web-scale systems possible

    A survey of parallel execution strategies for transitive closure and logic programs

    Get PDF
    An important feature of database technology of the nineties is the use of parallelism for speeding up the execution of complex queries. This technology is being tested in several experimental database architectures and a few commercial systems for conventional select-project-join queries. In particular, hash-based fragmentation is used to distribute data to disks under the control of different processors in order to perform selections and joins in parallel. With the development of new query languages, and in particular with the definition of transitive closure queries and of more general logic programming queries, the new dimension of recursion has been added to query processing. Recursive queries are complex; at the same time, their regular structure is particularly suited for parallel execution, and parallelism may give a high efficiency gain. We survey the approaches to parallel execution of recursive queries that have been presented in the recent literature. We observe that research on parallel execution of recursive queries is separated into two distinct subareas, one focused on the transitive closure of Relational Algebra expressions, the other one focused on optimization of more general Datalog queries. Though the subareas seem radically different because of the approach and formalism used, they have many common features. This is not surprising, because most typical Datalog queries can be solved by means of the transitive closure of simple algebraic expressions. We first analyze the relationship between the transitive closure of expressions in Relational Algebra and Datalog programs. We then review sequential methods for evaluating transitive closure, distinguishing iterative and direct methods. We address the parallelization of these methods, by discussing various forms of parallelization. Data fragmentation plays an important role in obtaining parallel execution; we describe hash-based and semantic fragmentation. Finally, we consider Datalog queries, and present general methods for parallel rule execution; we recognize the similarities between these methods and the methods reviewed previously, when the former are applied to linear Datalog queries. We also provide a quantitative analysis that shows the impact of the initial data distribution on the performance of methods
    corecore