901 research outputs found

    Degrees and distances in random and evolving Apollonian networks

    Get PDF
    This paper studies Random and Evolving Apollonian networks (RANs and EANs), in d dimension for any d>=2, i.e. dynamically evolving random d dimensional simplices looked as graphs inside an initial d-dimensional simplex. We determine the limiting degree distribution in RANs and show that it follows a power law tail with exponent tau=(2d-1)/(d-1). We further show that the degree distribution in EANs converges to the same degree distribution if the simplex-occupation parameter in the n-th step of the dynamics is q_n->0 and sum_{n=0}^infty q_n =infty. This result gives a rigorous proof for the conjecture of Zhang et al. that EANs tend to show similar behavior as RANs once the occupation parameter q->0. We also determine the asymptotic behavior of shortest paths in RANs and EANs for arbitrary d dimensions. For RANs we show that the shortest path between two uniformly chosen vertices (typical distance), the flooding time of a uniformly picked vertex and the diameter of the graph after n steps all scale as constant times log n. We determine the constants for all three cases and prove a central limit theorem for the typical distances. We prove a similar CLT for typical distances in EANs

    Coherence in scale-free networks of chaotic maps

    Get PDF
    We study fully synchronized states in scale-free networks of chaotic logistic maps as a function of both dynamical and topological parameters. Three different network topologies are considered: (i) random scale-free topology, (ii) deterministic pseudo-fractal scale-free network, and (iii) Apollonian network. For the random scale-free topology we find a coupling strength threshold beyond which full synchronization is attained. This threshold scales as k−μk^{-\mu}, where kk is the outgoing connectivity and μ\mu depends on the local nonlinearity. For deterministic scale-free networks coherence is observed only when the coupling strength is proportional to the neighbor connectivity. We show that the transition to coherence is of first-order and study the role of the most connected nodes in the collective dynamics of oscillators in scale-free networks.Comment: 9 pages, 8 figure

    Non-nequilibrium model on Apollonian networks

    Full text link
    We investigate the Majority-Vote Model with two states (−1,+1-1,+1) and a noise qq on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter qq. We also studies de effect of redirecting a fraction pp of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν\gamma/\nu, β/ν\beta/\nu, and 1/ν1/\nu for several values of rewiring probability pp. The critical noise was determined qcq_{c} and U∗U^{*} also was calculated. The effective dimensionality of the system was observed to be independent on pp, and the value Deff≈1.0D_{eff} \approx1.0 is observed for these networks. Previous results on the Ising model in Apollonian Networks have reported no presence of a phase transition. Therefore, the results present here demonstrate that the Majority-Vote Model belongs to a different universality class as the equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure

    Synchronous and Asynchronous Recursive Random Scale-Free Nets

    Full text link
    We investigate the differences between scale-free recursive nets constructed by a synchronous, deterministic updating rule (e.g., Apollonian nets), versus an asynchronous, random sequential updating rule (e.g., random Apollonian nets). We show that the dramatic discrepancies observed recently for the degree exponent in these two cases result from a biased choice of the units to be updated sequentially in the asynchronous version
    • …
    corecore