270 research outputs found

    Parallel QR decomposition in LTE-A systems

    Full text link
    The QR Decomposition (QRD) of communication channel matrices is a fundamental prerequisite to several detection schemes in Multiple-Input Multiple-Output (MIMO) communication systems. Herein, the main feature of the QRD is to transform the non-causal system into a causal system, where consequently efficient detection algorithms based on the Successive Interference Cancellation (SIC) or Sphere Decoder (SD) become possible. Also, QRD can be used as a light but efficient antenna selection scheme. In this paper, we address the study of the QRD methods and compare their efficiency in terms of computational complexity and error rate performance. Moreover, a particular attention is paid to the parallelism of the QRD algorithms since it reduces the latency of the matrix factorization.Comment: The eleventh IEEE International Workshop on Signal Processing Advances for Wireless Communications, 5 pages, 4 figures, 4 algorithms, 1 tabl

    Householder orthogonalization with a non-standard inner product

    Full text link
    Householder orthogonalization plays an important role in numerical linear algebra. It attains perfect orthogonality regardless of the conditioning of the input. However, in the context of a non-standard inner product, it becomes difficult to apply Householder orthogonalization due to the lack of an initial orthogonal basis. We propose strategies to overcome this obstacle and discuss algorithms and variants of Householder orthogonalization with a non-standard inner product. Rounding error analysis and numerical experiments demonstrate that our approach is numerically stable

    Randomized methods for matrix computations

    Full text link
    The purpose of this text is to provide an accessible introduction to a set of recently developed algorithms for factorizing matrices. These new algorithms attain high practical speed by reducing the dimensionality of intermediate computations using randomized projections. The algorithms are particularly powerful for computing low-rank approximations to very large matrices, but they can also be used to accelerate algorithms for computing full factorizations of matrices. A key competitive advantage of the algorithms described is that they require less communication than traditional deterministic methods
    • …
    corecore