231 research outputs found

    Parallel Pseudo Arc-Length Moving Mesh Schemes for Multidimensional Detonation

    Get PDF

    Numerical Modeling Of The Shock Tube Flow Fields Before Andduring Ignition Delay Time Experiments At Practical Conditions

    Get PDF
    An axi-symmetric shock-tube model has been developed to simulate the shock-wave propagation and reflection in both non-reactive and reactive flows. Simulations were performed for the full shock-tube geometry of the high-pressure shock tube facility at Texas A&M University. Computations were carried out in the CFD solver FLUENT based on the finite volume approach and the AUSM+ flux differencing scheme. Adaptive mesh refinement (AMR) algorithm was applied to the time-dependent flow fields to accurately capture and resolve the shock and contact discontinuities as well as the very fine scales associated with the viscous and reactive effects. A conjugate heat transfer model has been incorporated which enhanced the credibility of the simulations. The multi-dimensional, time-dependent numerical simulations resolved all of the relevant scales, ranging from the size of the system to the reaction zone scale. The robustness of the numerical model and the accuracy of the simulations were assessed through validation with the analytical ideal shock-tube theory and experimental data. The numerical method is first applied to the problem of axi-symmetric inviscid flow then viscous effects are incorporated through viscous modeling. The non-idealities in the shock tube have been investigated and quantified, notably the non-ideal transient behavior in the shock tube nozzle section, heat transfer effects from the hot gas to the shock tube side walls, the reflected shock/boundary layer interactions or what is known as bifurcation, and the contact surface/bifurcation interaction resulting into driver gas contamination. The non-reactive model is shown to be capable of accurately simulating the shock and expansion wave propagations and reflections as well as the flow non-uniformities behind the reflected shock wave. Both the inviscid and the viscous non-reactive models provided a baseline for the combustion model iii which involves elementary chemical reactions and requires the coupling of the chemistry with the flow fields adding to the complexity of the problem and thereby requiring tremendous computational resources. Combustion modeling focuses on the ignition process behind the reflected shock wave in undiluted and diluted Hydrogen test gas mixtures. Accurate representation of the Shock - tube reactive flow fields is more likely to be achieved by the means of the LES model in conjunction with the EDC model. The shock-tube CFD model developed herein provides valuable information to the interpretation of the shock-tube experimental data and to the understanding of the impact the facility-dependent non-idealities can have on the ignition delay time measurements

    Dynamic Evolution of a Transient Supersonic Trailing Jet Induced by a Strong Incident Shock Wave

    Full text link
    The dynamic evolution of a highly underexpanded transient supersonic jet at the exit of a pulse detonation engine is investigated via high-resolution time-resolved schlieren and numerical simulations. Experimental evidence is provided for the presence of a second triple shock configuration along with a shocklet between the reflected shock and the slipstream, which has no analogue in a steady-state underexpanded jet. A pseudo-steady model is developed, which allows for the determination of the post-shock flow condition for a transient propagating oblique shock. This model is applied to the numerical simulations to reveal the mechanism leading to the formation of the second triple point. Accordingly, the formation of the triple point is initiated by the transient motion of the reflected shock, which is induced by the convection of the vortex ring. While the vortex ring embedded shock move essentially as a translating strong oblique shock, the reflected shock is rotating towards its steady state position. This results in a pressure discontinuity that must be resolved by the formation of a shocklet

    ICASE/LaRC Workshop on Adaptive Grid Methods

    Get PDF
    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field

    ICASE

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science

    Aeronautical engineering: A continuing bibliography with indexes (supplement 296)

    Get PDF
    This bibliography lists 592 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the accomplishments and activities at ICOMP during 1993

    Parallel Pseudo Arc-Length Moving Mesh Schemes for Multidimensional Detonation

    No full text
    We have discussed the multidimensional parallel computation for pseudo arc-length moving mesh schemes, and the schemes can be used to capture the strong discontinuity for multidimensional detonations. Different from the traditional Euler numerical schemes, the problems of parallel schemes for pseudo arc-length moving mesh schemes include diagonal processor communications and mesh point communications, which are illustrated by the schematic diagram and key pseudocodes. Finally, the numerical examples are given to show that the pseudo arc-length moving mesh schemes are second-order convergent and can successfully capture the strong numerical strong discontinuity of the detonation wave. In addition, our parallel methods are proved effectively and the computational time is obviously decreased

    Numerical investigations of thermal spray coating processes: combustion, supersonic flow, droplet injection, and substrate impingement phenomena

    No full text
    The aim of this thesis is to apply CFD methods to investigate the system characteristics of high speed thermal spray coating processes in order facilitate technological development. Supersonic flow phenomena, combustion, discrete droplet and particle migration with heating, phase change and disintegration, and particle impingement phenomena at the substrate are studied. Each published set of results provide an individual understanding of the underlying physics which control different aspects of thermal spray systems.A wide range of parametric studies have been carried out for HVOF, warm spray, and cold spay systems in order to build a better understanding of process design requirements. These parameters include: nozzle cross-section shape, particle size, processing gas type, nozzle throat diameter, and combustion chamber size. Detailed descriptions of the gas phase characteristics through liquid fuelled HVOF, warm spray, and cold spray systems are built and the interrelations between the gas and powder particle phases are discussed. A further study looks in detail at the disintegration of discrete phase water droplets, providing a new insight to the mechanisms which control droplet disintegration, and serves as a fundamental reference for future developments of liquid feedstock devices.In parallel with these gas-particle-droplet simulations, the impingement of molten and semi-molten powder droplets at the substrate is investigated and the models applied simulate the impingement, spreading and solidification. The results obtained shed light on the break-up phenomena on impact and describe in detail how the solidification process varies with an increasing impact velocity. The results obtained also visually describe the freezing induced break-up phenomenon at the splat periphery
    • …
    corecore