259,932 research outputs found

    Teaching Parallel Programming Using Java

    Full text link
    This paper presents an overview of the "Applied Parallel Computing" course taught to final year Software Engineering undergraduate students in Spring 2014 at NUST, Pakistan. The main objective of the course was to introduce practical parallel programming tools and techniques for shared and distributed memory concurrent systems. A unique aspect of the course was that Java was used as the principle programming language. The course was divided into three sections. The first section covered parallel programming techniques for shared memory systems that include multicore and Symmetric Multi-Processor (SMP) systems. In this section, Java threads was taught as a viable programming API for such systems. The second section was dedicated to parallel programming tools meant for distributed memory systems including clusters and network of computers. We used MPJ Express-a Java MPI library-for conducting programming assignments and lab work for this section. The third and the final section covered advanced topics including the MapReduce programming model using Hadoop and the General Purpose Computing on Graphics Processing Units (GPGPU).Comment: 8 Pages, 6 figures, MPJ Express, MPI Java, Teaching Parallel Programmin

    Exploiting parallelism in coalgebraic logic programming

    Get PDF
    We present a parallel implementation of Coalgebraic Logic Programming (CoALP) in the programming language Go. CoALP was initially introduced to reflect coalgebraic semantics of logic programming, with coalgebraic derivation algorithm featuring both corecursion and parallelism. Here, we discuss how the coalgebraic semantics influenced our parallel implementation of logic programming

    The JStar language philosophy

    Get PDF
    This paper introduces the JStar parallel programming language, which is a Java-based declarative language aimed at discouraging sequential programming, en-couraging massively parallel programming, and giving the compiler and runtime maximum freedom to try alternative parallelisation strategies. We describe the execution semantics and runtime support of the language, several optimisations and parallelism strategies, with some benchmark results

    Using Cognitive Computing for Learning Parallel Programming: An IBM Watson Solution

    Full text link
    While modern parallel computing systems provide high performance resources, utilizing them to the highest extent requires advanced programming expertise. Programming for parallel computing systems is much more difficult than programming for sequential systems. OpenMP is an extension of C++ programming language that enables to express parallelism using compiler directives. While OpenMP alleviates parallel programming by reducing the lines of code that the programmer needs to write, deciding how and when to use these compiler directives is up to the programmer. Novice programmers may make mistakes that may lead to performance degradation or unexpected program behavior. Cognitive computing has shown impressive results in various domains, such as health or marketing. In this paper, we describe the use of IBM Watson cognitive system for education of novice parallel programmers. Using the dialogue service of the IBM Watson we have developed a solution that assists the programmer in avoiding common OpenMP mistakes. To evaluate our approach we have conducted a survey with a number of novice parallel programmers at the Linnaeus University, and obtained encouraging results with respect to usefulness of our approach
    corecore