187 research outputs found

    Parallel Processing in Web-Based Interactive Echocardiography Simulators

    Get PDF
    Medical simulation is a new method of education in medicine. It allows training medical students or practitioners without the need to involve patients and makes them familiar with various kinds of examinations, especially related to medical imaging. Simulators that visualize examinations or operations require large computing power to keep time constraints of output presentation. A common approach to this problem is to use graphics processing units (GPU), but the code is not portable. The method of parallelization of processing is more important in component environments, to allow calculating projections in real time. In this paper parallelization issues in the ultrasound view simulation based on provided computer tomography images are analyzed. The proposed domain decomposition for this problem leads to significant reduction in simulation time and allows obtaining an animated visualization for currently available personal computers with multicore processors. The use of a component environment makes the solution portable and makes it possible to implement a web-based application that is the basis for eTraining. The method for creating animation in real time for such solutions is also analyzed

    A virtual imaging platform for multi-modality medical image simulation.

    Get PDF
    International audienceThis paper presents the Virtual Imaging Platform (VIP), a platform accessible at http://vip.creatis.insa-lyon.fr to facilitate the sharing of object models and medical image simulators, and to provide access to distributed computing and storage resources. A complete overview is presented, describing the ontologies designed to share models in a common repository, the workflow template used to integrate simulators, and the tools and strategies used to exploit computing and storage resources. Simulation results obtained in four image modalities and with different models show that VIP is versatile and robust enough to support large simulations. The platform currently has 200 registered users who consumed 33 years of CPU time in 2011

    An Affordable Portable Obstetric Ultrasound Simulator for Synchronous and Asynchronous Scan Training

    Get PDF
    The increasing use of Point of Care (POC) ultrasound presents a challenge in providing efficient training to new POC ultrasound users. In response to this need, we have developed an affordable, compact, laptop-based obstetric ultrasound training simulator. It offers freehand ultrasound scan on an abdomen-sized scan surface with a 5 degrees of freedom sham transducer and utilizes 3D ultrasound image volumes as training material. On the simulator user interface is rendered a virtual torso, whose body surface models the abdomen of a particular pregnant scan subject. A virtual transducer scans the virtual torso, by following the sham transducer movements on the scan surface. The obstetric ultrasound training is self-paced and guided by the simulator using a set of tasks, which are focused on three broad areas, referred to as modules: 1) medical ultrasound basics, 2) orientation to obstetric space, and 3) fetal biometry. A learner completes the scan training through the following three steps: (i) watching demonstration videos, (ii) practicing scan skills by sequentially completing the tasks in Modules 2 and 3, with scan evaluation feedback and help functions available, and (iii) a final scan exercise on new image volumes for assessing the acquired competency. After each training task has been completed, the simulator evaluates whether the task has been carried out correctly or not, by comparing anatomical landmarks identified and/or measured by the learner to reference landmark bounds created by algorithms, or pre-inserted by experienced sonographers. Based on the simulator, an ultrasound E-training system has been developed for the medical practitioners for whom ultrasound training is not accessible at local level. The system, composed of a dedicated server and multiple networked simulators, provides synchronous and asynchronous training modes, and is able to operate with a very low bit rate. The synchronous (or group-learning) mode allows all training participants to observe the same 2D image in real-time, such as a demonstration by an instructor or scan ability of a chosen learner. The synchronization of 2D images on the different simulators is achieved by directly transmitting the position and orientation of the sham transducer, rather than the ultrasound image, and results in a system performance independent of network bandwidth. The asynchronous (or self-learning) mode is described in the previous paragraph. However, the E-training system allows all training participants to stay networked to communicate with each other via text channel. To verify the simulator performance and training efficacy, we conducted several performance experiments and clinical evaluations. The performance experiment results indicated that the simulator was able to generate greater than 30 2D ultrasound images per second with acceptable image quality on medium-priced computers. In our initial experiment investigating the simulator training capability and feasibility, three experienced sonographers individually scanned two image volumes on the simulator. They agreed that the simulated images and the scan experience were adequately realistic for ultrasound training; the training procedure followed standard obstetric ultrasound protocol. They further noted that the simulator had the potential for becoming a good supplemental training tool for medical students and resident doctors. A clinic study investigating the simulator training efficacy was integrated into the clerkship program of the Department of Obstetrics and Gynecology, University of Massachusetts Memorial Medical Center. A total of 24 3rd year medical students were recruited and each of them was directed to scan six image volumes on the simulator in two 2.5-hour sessions. The study results showed that the successful scan times for the training tasks significantly decreased as the training progressed. A post-training survey answered by the students found that they considered the simulator-based training useful and suitable for medical students and resident doctors. The experiment to validate the performance of the E-training system showed that the average transmission bit rate was approximately 3-4 kB/s; the data loss was less than 1% and no loss of 2D images was visually detected. The results also showed that the 2D images on all networked simulators could be considered to be synchronous even though inter-continental communication existed

    Real-Time Ultrasound Simulation for Medical Training and Standardized Patient Assessment

    Get PDF
    With the increasing role played by ultrasound in clinical diagnostics, ultrasound training in medical education has become more and more important. The clinical routine for ultrasound training is on real patients; therefore monitored and guided examinations involving medical students are quite time-constrained. Furthermore, standardized patients (SPs), who are increasingly used in medical school for teaching and assessing medical students, need to be augmented. These SPs are typically healthy individuals who can not accurately portray the variety of abnormalities that are needed for training especially when medical examinations involve instrument interactions. To augment SPs in a realistically effective way and also address the resourced time constraints for sonography training, a computerized ultrasound simulation is essential for medical education. In this dissertation, I investigate a real-time ultrasound simulation methodology based on a virtual 3-dimentional (3-D) mesh organ. This research has developed the simulation technology to augment SPs with synthetic ultrasound images. I present this methodology and its use in simulating echocardiography. This simulated echocardiogram displays the various oriented sonographs in real time according to the placement of a mock transducer without the need of an actual patient

    Investigation and Validation of Imaging Techniques for Mitral Valve Disease Diagnosis and Intervention

    Get PDF
    Mitral Valve Disease (MVD) describes a variety of pathologies that result in regurgitation of blood during the systolic phase of the cardiac cycle. Decisions in valvular disease management rely heavily on non-invasive imaging. Transesophageal echocardiography (TEE) is widely recognized as the key evaluation technique where backflow of high velocity blood can be visualized under Doppler. In most cases, TEE imaging is adequate for identifying mitral valve pathology, though the modality is often limited from signal dropout, artifacts and a restricted field of view. Quantitative analysis is an integral part of the overall assessment of valve morphology and gives objective evidence for both classification and guiding intervention of regurgitation. In addition, patient-specific models derived from diagnostic TEE images allow clinicians to gain insight into uniquely intricate anatomy prior to surgery. However, the heavy reliance on TEE segmentation for diagnosis and modelling has necessitated an evaluation of the accuracy of the oft-used mitral valve imaging modality. Dynamic cardiac 4D-Computed Tomography (4D-CT) is emerging as a valuable tool for diagnosis, quantification and assessment of cardiac diseases. This modality has the potential to provide a high quality rendering of the mitral valve and subvalvular apparatus, to provide a more complete picture of the underlying morphology. However, application of dynamic CT to mitral valve imaging is especially challenging due to the large and rapid motion of the valve leaflets. It is therefore necessary to investigate the accuracy and level of precision by which dynamic CT captures mitral valve motion throughout the cardiac cycle. To do this, we design and construct a silicone and bovine quasi-static mitral valve phantom which can simulate a range of ECG-gated heart rates and reproduce physiologic valve motion over the cardiac cycle. In this study, we discovered that the dynamic CT accurately captures the underlying valve movement, but with a higher prevalence of image artifacts as leaflet and chordae motion increases due to elevated heart rates. In a subsequent study, we acquire simultaneous CT and TEE images of both a silicone mitral valve phantom and an iodine-stained bovine mitral valve. We propose a pipeline to use CT as the ground truth to study the relationship between TEE intensities and the underlying valve morphology. Preliminary results demonstrate that with an optimized threshold selection based solely on TEE pixel intensities, only 40\% of pixels are correctly classified as part of the valve. In addition, we have shown that emphasizing the centre-line rather than the boundaries of high intensity TEE image regions provides a better representation and segmentation of the valve morphology. This work has the potential to inform and augment the use of TEE for diagnosis and modelling of the mitral valve in the clinical workflow for MVD

    A Virtual Imaging Platform for Multi-Modality Medical Image Simulation

    Get PDF
    This paper presents the Virtual Imaging Platform (VIP), a platform accessible at http://vip.creatis.insa-lyon.fr to facilitate the sharing of object models and medical image simulators, and to provide access to distributed computing and storage resources. A complete overview is presented, describing the ontologies designed to share models in a common repository, the workίow template used to integrate simulators, and the tools and strategies used to exploit computing and storage resources. Simulation results obtained in four image modalities and with different models show that VIP is versatile and robust enough to support large simulations. The platform currently has 200 registered users who consumed 33 years of CPU time in 2011

    Mathematical models for educational simulation of cardiovascular pathophysiology

    Get PDF
    Tese de doutoramento. Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto, Instituto de Engenharia Biomédica, Faculdade de Medicina. Universidade do Porto. 200

    Exploration, design and application of simulation based technology in interventional cardiology

    Get PDF
    Medical education is undergoing a vast change from the traditional apprenticeship model to technology driven delivery of training to meet the demands of the new generation of doctors. With the reduction in the training hours of junior doctors, technology driven education can compensate for the time deficit in training. Each new technology arrives on a wave of great expectations; sometimes our expectations of true change are met and sometimes the new technology remains as a passing fashion only. The aim of the thesis is to explore, design and apply simulation based applications in interventional cardiology for educating the doctors and the public. Chapters 1and 2 present an overview of the current practice of education delivery and the evidence concerning simulation based education in interventional cardiology. Introduction of any new technology into an established system is often met with resistance. Hence Chapters 3 and 4 explore the attitudes and perceptions of consultants and trainees in cardiology towards the integration of a simulation based education into the cardiology curriculum. Chapters 5 and 6 present the “i-health project,” introduction of an electronic form for clinical information transfer from the ambulance crew to the hospital, enactment of case scenarios of myocardial infarction of varied levels of difficulty in a simulated environment and preliminary evaluation of the simulation. Chapter 7 focuses on educating the public in cardiovascular diseases and in coronary interventional procedures through simulation technology. Finally, Chapter 8 presents an overview of my findings, limitations and the future research that needs to be conducted which will enable the successful adoption of simulation based education into the cardiology curriculum.Open Acces

    Towards Patient Specific Mitral Valve Modelling via Dynamic 3D Transesophageal Echocardiography

    Get PDF
    Mitral valve disease is a common pathologic problem occurring increasingly in an aging population, and many patients suffering from mitral valve disease require surgical intervention. Planning an interventional approach from diagnostic imaging alone remains a significant clinical challenge. Transesophageal echocardiography (TEE) is the primary imaging modality used diagnostically, it has limitations in image quality and field-of-view. Recently, developments have been made towards modelling patient-specific deformable mitral valves from TEE imaging, however, a major barrier to producing accurate valve models is the need to derive the leaflet geometry through segmentation of diagnostic TEE imaging. This work explores the development of volume compounding and automated image analysis to more accurately and quickly capture the relevant valve geometry needed to produce patient-specific mitral valve models. Volume compounding enables multiple ultrasound acquisitions from different orientations and locations to be aligned and blended to form a single volume with improved resolution and field-of-view. A series of overlapping transgastric views are acquired that are then registered together with the standard en-face image and are combined using a blending function. The resulting compounded ultrasound volumes allow the visualization of a wider range of anatomical features within the left heart, enhancing the capabilities of a standard TEE probe. In this thesis, I first describe a semi-automatic segmentation algorithm based on active contours designed to produce segmentations from end-diastole suitable for deriving 3D printable molds. Subsequently I describe the development of DeepMitral, a fully automatic segmentation pipeline which leverages deep learning to produce very accurate segmentations with a runtime of less than ten seconds. DeepMitral is the first reported method using convolutional neural networks (CNNs) on 3D TEE for mitral valve segmentations. The results demonstrate very accurate leaflet segmentations, and a reduction in the time and complexity to produce a patient-specific mitral valve replica. Finally, a real-time annulus tracking system using CNNs to predict the annulus coordinates in the spatial frequency domain was developed. This method facilitates the use of mitral annulus tracking in real-time guidance systems, and further simplifies mitral valve modelling through the automatic detection of the annulus, which is a key structure for valve quantification, and reproducing accurate leaflet dynamics

    The structural heart disease interventional imager rationale, skills and training: a position paper of the European Association of Cardiovascular Imaging

    Get PDF
    Percutaneous therapeutic options for an increasing variety of structural heart diseases (SHD) have grown dramatically. Within this context of continuous expansion of devices and procedures, there has been increased demand for physicians with specific knowledge, skills, and advanced training in multimodality cardiac imaging. As a consequence, a new subspecialty of 'Interventional Imaging' for SHD interventions and a new dedicated professional figure, the 'Interventional Imager' with specific competencies has emerged. The interventional imager is an integral part of the heart team and plays a central role in decision-making throughout the patient pathway, including the appropriateness and feasibility of a procedure, pre-procedural planning, intra-procedural guidance, and post-procedural follow-up. However, inherent challenges exist to develop a training programme for SHD imaging that differs from traditional cardiovascular imaging pathways. The purpose of this document is to provide the standard requirements for the training in SHD imaging, as well as a starting point for an official certification process for SHD interventional imager.Cardiolog
    corecore