64,043 research outputs found

    The organization of associative memory with lamination of elements

    Get PDF
    Article contains the description of parallel search in associative memory. Initial operands (words) гeceive a dual impression. The source text is presented in the form of a line or in the form of a matrix. The sample is presented by a two-dimensional form. It consists in splitting a sample into even and odd character sets. Addition of the second coordinate for a sample allows to execute the alternating development of symbols and provides the anticipatory analysis of symbols of a sample of rather next symbols.This feature of the form of a sample allows to process each character set parallely. Processing of character sets is carried out on bit cutoffs in the associative memory at the same time. For the hardware support of steps of retrieval operation the original structure of the associative memory is offered. The structure contains new communications between storage cells, two retrieval registers for storage of character sets and original a circuitry element for foliation of characters on sets.Keywords: search in a sample, matrix, associative memory, stratification of element

    Strengthening measurements from the edges: application-level packet loss rate estimation

    Get PDF
    Network users know much less than ISPs, Internet exchanges and content providers about what happens inside the network. Consequently users cannot either easily detect network neutrality violations or readily exercise their market power by knowledgeably switching ISPs. This paper contributes to the ongoing efforts to empower users by proposing two models to estimate -- via application-level measurements -- a key network indicator, i.e., the packet loss rate (PLR) experienced by FTP-like TCP downloads. Controlled, testbed, and large-scale experiments show that the Inverse Mathis model is simpler and more consistent across the whole PLR range, but less accurate than the more advanced Likely Rexmit model for landline connections and moderate PL

    High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Get PDF
    This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms

    Qubit Data Structures for Analyzing Computing Systems

    Full text link
    Qubit models and methods for improving the performance of software and hardware for analyzing digital devices through increasing the dimension of the data structures and memory are proposed. The basic concepts, terminology and definitions necessary for the implementation of quantum computing when analyzing virtual computers are introduced. The investigation results concerning design and modeling computer systems in a cyberspace based on the use of two-component structure are presented.Comment: 9 pages,4 figures, Proceeding of the Third International Conference on Data Mining & Knowledge Management Process (CDKP 2014

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Sapporo2: A versatile direct NN-body library

    Full text link
    Astrophysical direct NN-body methods have been one of the first production algorithms to be implemented using NVIDIA's CUDA architecture. Now, almost seven years later, the GPU is the most used accelerator device in astronomy for simulating stellar systems. In this paper we present the implementation of the Sapporo2 NN-body library, which allows researchers to use the GPU for NN-body simulations with little to no effort. The first version, released five years ago, is actively used, but lacks advanced features and versatility in numerical precision and support for higher order integrators. In this updated version we have rebuilt the code from scratch and added support for OpenCL, multi-precision and higher order integrators. We show how to tune these codes for different GPU architectures and present how to continue utilizing the GPU optimal even when only a small number of particles (N<100N < 100) is integrated. This careful tuning allows Sapporo2 to be faster than Sapporo1 even with the added options and double precision data loads. The code runs on a range of NVIDIA and AMD GPUs in single and double precision accuracy. With the addition of OpenCL support the library is also able to run on CPUs and other accelerators that support OpenCL.Comment: 15 pages, 7 figures. Accepted for publication in Computational Astrophysics and Cosmolog
    corecore