18 research outputs found

    Energy-efficiency evaluation of Intel KNL for HPC workloads

    Get PDF
    Energy consumption is increasingly becoming a limiting factor to the design of faster large-scale parallel systems, and development of energy-efficient and energy-aware applications is today a relevant issue for HPC code-developer communities. In this work we focus on energy performance of the Knights Landing (KNL) Xeon Phi, the latest many-core architecture processor introduced by Intel into the HPC market. We take into account the 64-core Xeon Phi 7230, and analyze its energy performance using both the on-chip MCDRAM and the regular DDR4 system memory as main storage for the application data-domain. As a benchmark application we use a Lattice Boltzmann code heavily optimized for this architecture and implemented using different memory data layouts to store its lattice. We assessthen the energy consumption using different memory data-layouts, kind of memory (DDR4 or MCDRAM) and number of threads per core

    Policy-based SLA storage management model for distributed data storage services

    Get PDF
    There is  high demand for storage related services supporting scientists in their research activities. Those services are expected to provide not only capacity but also features allowing for more flexible and cost efficient usage. Such features include easy multiplatform data access, long term data retention, support for performance and cost differentiating of SLA restricted data access. The paper presents a policy-based SLA storage management model for distributed data storage services. The model allows for automated management of distributed data aimed at QoS provisioning with no strict resource reservation. The problem of providing  users with the required QoS requirements is complex, and therefore the model implements heuristic approach  for solving it. The corresponding system architecture, metrics and methods for SLA focused storage management are developed and tested in a real, nationwide environment

    A PETSc parallel-in-time solver based on MGRIT algorithm

    Get PDF
    We address the development of a modular implementation of the MGRIT (MultiGrid-In-Time) algorithm to solve linear and nonlinear systems that arise from the discretization of evolutionary models with a parallel-in-time approach in the context of the PETSc (the Portable, Extensible Toolkit for Scientific computing) library. Our aim is to give the opportunity of predicting the performance gain achievable when using the MGRIT approach instead of the Time Stepping integrator (TS). To this end, we analyze the performance parameters of the algorithm that provide a-priori the best number of processing elements and grid levels to use to address the scaling of MGRIT, regarded as a parallel iterative algorithm proceeding along the time dimensio

    Computational Performances and Energy Efficiency Assessment for a Lattice Boltzmann Method on Intel KNL

    Get PDF
    In this paper we report results of the analysis of computational performances and energy efficiency of a Lattice Boltzmann method (LBM) based application on the Intel KNL family of processors. In particular we analyse the impact of the main memory (DRAM) while using optimised memory access patterns to accessing data on the on-chip memory (MCDRAM) configured as cache for the DRAM, even when the size of the data of the simulation fits the capacity of the on-chip memory available on socket

    Towards Trasparent Data Access with Context Awareness

    Get PDF
    Applying the principles of open research data is an important factor accelerating the production, analysis of scientific results and worldwide collaboration. However, still very little data is being shared. The aim of this article is analysis of existing data access solutions in order to identify reasons for such situation. After analysis of existing solutions and data access stakeholders needs, the authors propose own vision of data access model evolution

    Using Redis supported by NVRAM in HPC applications

    Get PDF
    Nowadays, the efficiency of a storage systems is a bottleneck in many moern HPC clusters. High performance in traditional approach – processing using files – is often difficult to obtain because of model complexity and its read/write patterns. Alternative approach is applying a key-value database, which usually has low latency and scales well. On the other hand, many key-value stores suffer from limitation of memory capacity and vulnerability to serious faiures, which is caused by processing in RAM. Moreover, some research suggests, that scientific data models are not applicable to storage structures of key-value databases. In this paper, the author proposes resolving mentioned issues by replacing RAM with NVRAM. Practical example is based on Redis NoSQL. The article contains also a three domain specific APIs, that show the idea bhind transformation from HPC data model to Redis structures, as well as two micro-benchmarks results

    Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications

    Get PDF
    Energy efficiency is becoming increasingly important for computing systems, in particular for large scale HPC facilities. In this work we evaluate, from an user perspective, the use of Dynamic Voltage and Frequency Scaling (DVFS) techniques, assisted by the power and energy monitoring capabilities of modern processors in order to tune applications for energy efficiency. We run selected kernels and a full HPC application on two high-end processors widely used in the HPC context, namely an NVIDIA K80 GPU and an Intel Haswell CPU. We evaluate the available trade-offs between energy-to-solution and time-to-solution, attempting a function-by-function frequency tuning. We finally estimate the benefits obtainable running the full code on a HPC multi-GPU node, with respect to default clock frequency governors. We instrument our code to accurately monitor power consumption and execution time without the need of any additional hardware, and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on the different architectures using a simple energy-performance model, and derive a number of energy saving strategies which can be easily adopted on recent high-end HPC systems for generic applications

    Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    Full text link
    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core GPUs, exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenACC, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.Comment: 26 pages, 2 png figures, preprint of an article submitted for consideration in International Journal of Modern Physics

    Modeling and efficient simulations of broad-area edge-emitting semiconductor lasers and amplifiers

    Get PDF
    We present a (2+1)-dimensional partial differential equation model for spatial-lateral dynamics of edge-emitting broad-area semiconductor devices and several extensions of this model describing different physical effects. MPI-based parallelization of the resulting middlesize numerical problem is implemented and tested on the blade cluster and separate multi-core computers at the Weierstrass Institute in Berlin. It was found, that an application of 25-30 parallel processes on all considered platforms was guaranteeing a nearly optimal performance of the algorithm with the speedup around 20-25 and the efficiency of 0.7-0.8. It was also shown, that a simultaneous usage of several in-house available multi-core computers allows a further increase of the speedup without a significant loss of the efficiency. Finally, an importance of the considered problem and the efficient numerical simulations of this problem were illustrated by a few examples occurring in real world applications
    corecore