257,302 research outputs found

    Software/Hardware Tradeoffs in the Speedup of Color Image Processing Algorithms

    Get PDF
    Data parallel image processing algorithms have numerous uses in many real time applications. Depending on the complexity of the computations involved, these algorithms may take considerable amounts of time to complete. Since the algorithms are performed in real time, the end user is negatively impacted by the extended execution times. Fortunately, there are many different ways available in hardware and software to improve the speed of these algorithms. This thesis looks at several different methods of improving the speedup of color image processing algorithms and compares the tradeoffs among them. The methods for increasing the execution time of an algorithm include implementing Single Input Multiple Data (SIMD) instructions, using Posix threads to code across several processors, and using a stream based multichannel framework to implement the algorithms on an FPGA. Each of the above methods had advantages and disadvantages, yet all approaches were found to introduce a significant speedup over the single core baseline tests. These methods were completed on a number of different images to examine the effects of workload on the efficiency of the implementations. The application of these speedup techniques yielded excellent results leading to speedups of greater than 3.85 times in software and 5.8 times in hardware. In each of the software tests, the output image had a 2-d correlation coefficient (CORR2) of 1.0000. When implementing the algorithms in hardware using implementation specific approximations, the correlation coefficient of the output image was still an acceptable 0.99 or higher

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures

    Mosaic Maps: 2D Information from Perspective Data

    Get PDF

    Near real-time stereo vision system

    Get PDF
    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging

    A Correlational Encoder Decoder Architecture for Pivot Based Sequence Generation

    Full text link
    Interlingua based Machine Translation (MT) aims to encode multiple languages into a common linguistic representation and then decode sentences in multiple target languages from this representation. In this work we explore this idea in the context of neural encoder decoder architectures, albeit on a smaller scale and without MT as the end goal. Specifically, we consider the case of three languages or modalities X, Z and Y wherein we are interested in generating sequences in Y starting from information available in X. However, there is no parallel training data available between X and Y but, training data is available between X & Z and Z & Y (as is often the case in many real world applications). Z thus acts as a pivot/bridge. An obvious solution, which is perhaps less elegant but works very well in practice is to train a two stage model which first converts from X to Z and then from Z to Y. Instead we explore an interlingua inspired solution which jointly learns to do the following (i) encode X and Z to a common representation and (ii) decode Y from this common representation. We evaluate our model on two tasks: (i) bridge transliteration and (ii) bridge captioning. We report promising results in both these applications and believe that this is a right step towards truly interlingua inspired encoder decoder architectures.Comment: 10 page
    corecore