8 research outputs found

    Evolving a rule system controller for automatic driving in a car racing competition

    Get PDF
    IEEE Symposium on Computational Intelligence and Games. Perth, Australia, 15-18 December 2008.The techniques and the technologies supporting Automatic Vehicle Guidance are important issues. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the car safety, reduction in emission or fuel consumption or optimization of driver comfort during long journeys. Car racing is an active research field where new advances in aerodynamics, consumption and engine power are critical each season. Our proposal is to research how evolutionary computation techniques can help in this field. For this work we have designed an automatic controller that learns rules with a genetic algorithm. This paper is a report of the results obtained by this controller during the car racing competition held in Hong Kong during the IEEE World Congress on Computational Intelligence (WCCI 2008).Publicad

    Artificial evolution with Binary Decision Diagrams: a study in evolvability in neutral spaces

    Get PDF
    This thesis develops a new approach to evolving Binary Decision Diagrams, and uses it to study evolvability issues. For reasons that are not yet fully understood, current approaches to artificial evolution fail to exhibit the evolvability so readily exhibited in nature. To be able to apply evolvability to artificial evolution the field must first understand and characterise it; this will then lead to systems which are much more capable than they are currently. An experimental approach is taken. Carefully crafted, controlled experiments elucidate the mechanisms and properties that facilitate evolvability, focusing on the roles and interplay between neutrality, modularity, gradualism, robustness and diversity. Evolvability is found to emerge under gradual evolution as a biased distribution of functionality within the genotype-phenotype map, which serves to direct phenotypic variation. Neutrality facilitates fitness-conserving exploration, completely alleviating local optima. Population diversity, in conjunction with neutrality, is shown to facilitate the evolution of evolvability. The search is robust, scalable, and insensitive to the absence of initial diversity. The thesis concludes that gradual evolution in a search space that is free of local optima by way of neutrality can be a viable alternative to problematic evolution on multi-modal landscapes

    Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges

    Get PDF
    A variety of methods have been applied to the architectural configuration and learning or training of artificial deep neural networks (DNN). These methods play a crucial role in the success or failure of the DNN for most problems and applications. Evolutionary Algorithms (EAs) are gaining momentum as a computationally feasible method for the automated optimisation and training of DNNs. Neuroevolution is a term which describes these processes of automated configuration and training of DNNs using EAs. While many works exist in the literature, no comprehensive surveys currently exist focusing exclusively on the strengths and limitations of using neuroevolution approaches in DNNs. Prolonged absence of such surveys can lead to a disjointed and fragmented field preventing DNNs researchers potentially adopting neuroevolutionary methods in their own research, resulting in lost opportunities for improving performance and wider application within real-world deep learning problems. This paper presents a comprehensive survey, discussion and evaluation of the state-of-the-art works on using EAs for architectural configuration and training of DNNs. Based on this survey, the paper highlights the most pertinent current issues and challenges in neuroevolution and identifies multiple promising future research directions.Comment: 20 pages (double column), 2 figures, 3 tables, 157 reference

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field
    corecore