288 research outputs found

    Experiments on a Parallel Nonlinear Jacobi–Davidson Algorithm

    Get PDF
    AbstractThe Jacobi–Davidson (JD) algorithm is very well suited for the computation of a few eigen-pairs of large sparse complex symmetric nonlinear eigenvalue problems. The performance of JD crucially depends on the treatment of the so-called correction equation, in particular the preconditioner, and the initial vector. Depending on the choice of the spectral shift and the accuracy of the solution, the convergence of JD can vary from linear to cubic. We investigate parallel preconditioners for the Krylov space method used to solve the correction equation.We apply our nonlinear Jacobi–Davidson (NLJD) method to quadratic eigenvalue problems that originate from the time-harmonic Maxwell equation for the modeling and simulation of resonating electromagnetic structures

    A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc

    Full text link
    In the context of large-scale eigenvalue problems, methods of Davidson type such as Jacobi-Davidson can be competitive with respect to other types of algorithms, especially in some particularly difficult situations such as computing interior eigenvalues or when matrix factorization is prohibitive or highly inefficient. However, these types of methods are not generally available in the form of high-quality parallel implementations, especially for the case of non-Hermitian eigenproblems. We present our implementation of various Davidson-type methods in SLEPc, the Scalable Library for Eigenvalue Problem Computations. The solvers incorporate many algorithmic variants for subspace expansion and extraction, and cover a wide range of eigenproblems including standard and generalized, Hermitian and non-Hermitian, with either real or complex arithmetic. We provide performance results on a large battery of test problems.This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519. Author's addresses: E. Romero, Institut I3M, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain), and J. E. Roman, Departament de Sistemes Informatics i Computacio, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; email: [email protected] Alcalde, E.; Román Moltó, JE. (2014). A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Transactions on Mathematical Software. 40(2):13:01-13:29. https://doi.org/10.1145/2543696S13:0113:29402P. Arbenz, M. Becka, R. Geus, U. Hetmaniuk, and T. Mengotti. 2006. On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Comput. 32, 2, 157--165.Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Eds. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA.C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist. 2009. Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36, 3, 13:1--13:23.S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. Smith, and H. Zhang. 2011. PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.2, Argonne National Laboratory.S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. 1997. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds., Birkhaüser, 163--202.M. A. Brebner and J. Grad. 1982. Eigenvalues of Ax =λ Bx for real symmetric matrices A and B computed by reduction to a pseudosymmetric form and the HR process. Linear Algebra Appl. 43, 99--118.C. Campos, J. E. Roman, E. Romero, and A. Tomas. 2011. SLEPc users manual. Tech. Rep. DSICII/24/02 - Revision 3.2, D. Sistemes Informàtics i Computació, Universitat Politècnica de València. http://www.grycap.upv.es/slepc.T. Dannert and F. Jenko. 2005. Gyrokinetic simulation of collisionless trapped-electronmode turbulence. Phys. Plasmas 12, 7, 072309.E. R. Davidson. 1975. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 1, 87--94.T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1, 1:1--1:25.H. C. Elman, A. Ramage, and D. J. Silvester. 2007. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2. Article 14.T. Ericsson and A. Ruhe. 1980. The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems. Math. Comp. 35, 152, 1251--1268.M. Ferronato, C. Janna, and G. Pini. 2012. Efficient parallel solution to large-size sparse eigenproblems with block FSAI preconditioning. Numer. Linear Algebra Appl. 19, 5, 797--815.D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. 1998. Jacobi--Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 1, 94--125.M. A. Freitag and A. Spence. 2007. Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem. Electron. Trans. Numer. Anal. 28, 40--64.M. Genseberger. 2010. Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi-Davidson method for large scale eigenvalue problems. App. Numer. Math. 60, 11, 1083--1099.V. Hernandez, J. E. Roman, and A. Tomas. 2007. Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33, 7--8, 521--540.V. Hernandez, J. E. Roman, and V. Vidal. 2005. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31, 3, 351--362.V. Heuveline, B. Philippe, and M. Sadkane. 1997. Parallel computation of spectral portrait of large matrices by Davidson type methods. Numer. Algor. 16, 1, 55--75.M. E. Hochstenbach. 2005a. Generalizations of harmonic and refined Rayleigh-Ritz. Electron. Trans. Numer. Anal. 20, 235--252.M. E. Hochstenbach. 2005b. Variations on harmonic Rayleigh--Ritz for standard and generalized eigenproblems. Preprint, Department of Mathematics, Case Western Reserve University.M. E. Hochstenbach and Y. Notay. 2006. The Jacobi--Davidson method. GAMM Mitt. 29, 2, 368--382.F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. 2010. A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J. Comput. Phys. 229, 8, 2932--2947.A. V. Knyazev. 2001. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 2, 517--541.A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov. 2007. Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in HYPRE and PETSc. SIAM J. Sci. Comput. 29, 5, 2224--2239.J. Kopal, M. Rozložník, M. Tuma, and A. Smoktunowicz. 2012. Rounding error analysis of orthogonalization with a non-standard inner product. Numer. Math. 52, 4, 1035--1058.D. Kressner. 2006. Block algorithms for reordering standard and generalized Schur forms. ACM Trans. Math. Softw. 32, 4, 521--532.R. B. Lehoucq, D. C. Sorensen, and C. Yang. 1998. ARPACK Users' Guide, Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA.Z. Li, Y. Saad, and M. Sosonkina. 2003. pARMS: a parallel version of the algebraic recursive multilevel solver. Numer. Linear Algebra Appl. 10, 5--6, 485--509.J. R. McCombs and A. Stathopoulos. 2006. Iterative validation of eigensolvers: a scheme for improving the reliability of Hermitian eigenvalue solvers. SIAM J. Sci. Comput. 28, 6, 2337--2358.F. Merz, C. Kowitz, E. Romero, J. E. Roman, and F. Jenko. 2012. Multi-dimensional gyrokinetic parameter studies based on eigenvalues computations. Comput. Phys. Commun. 183, 4, 922--930.R. B. Morgan. 1990. Davidson's method and preconditioning for generalized eigenvalue problems. J. Comput. Phys. 89, 241--245.R. B. Morgan. 1991. Computing interior eigenvalues of large matrices. Linear Algebra Appl. 154--156, 289--309.R. B. Morgan and D. S. Scott. 1986. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices. SIAM J. Sci. Statist. Comput. 7, 3, 817--825.R. Natarajan and D. Vanderbilt. 1989. A new iterative scheme for obtaining eigenvectors of large, real-symmetric matrices. J. Comput. Phys. 82, 1, 218--228.M. Nool and A. van der Ploeg. 2000. A parallel Jacobi--Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics. SIAM J. Sci. Comput. 22, 1, 95--112.J. Olsen, P. Jørgensen, and J. Simons. 1990. Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett. 169, 6, 463--472.C. C. Paige, B. N. Parlett, and H. A. van der Vorst. 1995. Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer. Linear Algebra Appl. 2, 2, 115--133.E. Romero and J. E. Roman. 2011. Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi--Davidson eigensolver. Concur. Comput.: Pract. Exp. 23, 17, 2179--2191.Y. Saad. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 2, 461--469.G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst. 1996. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36, 3, 595--633.G. L. G. Sleijpen and H. A. van der Vorst. 1996. A Jacobi--Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 2, 401--425.G. L. G. Sleijpen and H. A. van der Vorst. 2000. A Jacobi--Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42, 2, 267--293.G. L. G. Sleijpen, H. A. van der Vorst, and E. Meijerink. 1998. Efficient expansion of subspaces in the Jacobi--Davidson method for standard and generalized eigenproblems. Electron. Trans. Numer. Anal. 7, 75--89.A. Stathopoulos. 2007. Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part I: Seeking one eigenvalue. SIAM J. Sci. Comput. 29, 2, 481--514.A. Stathopoulos and J. R. McCombs. 2007. Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part II: Seeking many eigenvalues. SIAM J. Sci. Comput. 29, 5, 2162--2188.A. Stathopoulos and J. R. McCombs. 2010. PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description. ACM Trans. Math. Softw. 37, 2, 21:1--21:30.A. Stathopoulos and Y. Saad. 1998. Restarting techniques for the (Jacobi-)Davidson symmetric eigenvalue methods. Electron. Trans. Numer. Anal. 7, 163--181.A. Stathopoulos, Y. Saad, and C. F. Fischer. 1995. Robust preconditioning of large, sparse, symmetric eigenvalue problems. J. Comput. Appl. Math. 64, 3, 197--215.A. Stathopoulos, Y. Saad, and K. Wu. 1998. Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 1, 227--245.G. W. Stewart. 2001. Matrix Algorithms. Volume II: Eigensystems. SIAM, Philadelphia, PA.H. A. van der Vorst. 2002. Computational methods for large eigenvalue problems. In Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, Eds., Vol. VIII, Elsevier, 3--179.H. A. van der Vorst. 2004. Modern methods for the iterative computation of eigenpairs of matrices of high dimension. Z. Angew. Math. Mech. 84, 7, 444--451.T. van Noorden and J. Rommes 2007. Computing a partial generalized real Schur form using the Jacobi--Davidson method. Numer. Linear Algebra Appl. 14, 3, 197--215.T. D. Young, E. Romero, and J. E. Roman. 2013. Parallel finite element density functional computations exploiting grid refinement and subspace recycling. Comput. Phys. Commun. 184, 1, 66--72

    Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    Full text link
    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for {\em ab initio} electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods
    • …
    corecore