227 research outputs found

    Parallel unstructured solvers for linear partial differential equations

    Get PDF
    This thesis presents the development of a parallel algorithm to solve symmetric systems of linear equations and the computational implementation of a parallel partial differential equations solver for unstructured meshes. The proposed method, called distributive conjugate gradient - DCG, is based on a single-level domain decomposition method and the conjugate gradient method to obtain a highly scalable parallel algorithm. An overview on methods for the discretization of domains and partial differential equations is given. The partition and refinement of meshes is discussed and the formulation of the weighted residual method for two- and three-dimensions presented. Some of the methods to solve systems of linear equations are introduced, highlighting the conjugate gradient method and domain decomposition methods. A parallel unstructured PDE solver is proposed and its actual implementation presented. Emphasis is given to the data partition adopted and the scheme used for communication among adjacent subdomains is explained. A series of experiments in processor scalability is also reported. The derivation and parallelization of DCG are presented and the method validated throughout numerical experiments. The method capabilities and limitations were investigated by the solution of the Poisson equation with various source terms. The experimental results obtained using the parallel solver developed as part of this work show that the algorithm presented is accurate and highly scalable, achieving roughly linear parallel speed-up in many of the cases tested

    Parallel unstructured solvers for linear partial differential equations

    Get PDF
    This thesis presents the development of a parallel algorithm to solve symmetric systems of linear equations and the computational implementation of a parallel partial differential equations solver for unstructured meshes. The proposed method, called distributive conjugate gradient - DCG, is based on a single-level domain decomposition method and the conjugate gradient method to obtain a highly scalable parallel algorithm. An overview on methods for the discretization of domains and partial differential equations is given. The partition and refinement of meshes is discussed and the formulation of the weighted residual method for two- and three-dimensions presented. Some of the methods to solve systems of linear equations are introduced, highlighting the conjugate gradient method and domain decomposition methods. A parallel unstructured PDE solver is proposed and its actual implementation presented. Emphasis is given to the data partition adopted and the scheme used for communication among adjacent subdomains is explained. A series of experiments in processor scalability is also reported. The derivation and parallelization of DCG are presented and the method validated throughout numerical experiments. The method capabilities and limitations were investigated by the solution of the Poisson equation with various source terms. The experimental results obtained using the parallel solver developed as part of this work show that the algorithm presented is accurate and highly scalable, achieving roughly linear parallel speed-up in many of the cases tested.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Scalable Computational Algorithms for Geo-spatial Covid-19 Spread in High Performance Computing

    Full text link
    A nonlinear partial differential equation (PDE) based compartmental model of COVID-19 provides a continuous trace of infection over space and time. Finer resolutions in the spatial discretization, the inclusion of additional model compartments and model stratifications based on clinically relevant categories contribute to an increase in the number of unknowns to the order of millions. We adopt a parallel scalable solver allowing faster solutions for these high fidelity models. The solver combines domain decomposition and algebraic multigrid preconditioners at multiple levels to achieve the desired strong and weak scalability. As a numerical illustration of this general methodology, a five-compartment susceptible-exposed-infected-recovered-deceased (SEIRD) model of COVID-19 is used to demonstrate the scalability and effectiveness of the proposed solver for a large geographical domain (Southern Ontario). It is possible to predict the infections up to three months for a system size of 92 million (using 1780 processes) within 7 hours saving months of computational effort needed for the conventional solvers

    A Parallel Geometric Multigrid Method for Adaptive Finite Elements

    Get PDF
    Applications in a variety of scientific disciplines use systems of Partial Differential Equations (PDEs) to model physical phenomena. Numerical solutions to these models are often found using the Finite Element Method (FEM), where the problem is discretized and the solution of a large linear system is required, containing millions or even billions of unknowns. Often times, the domain of these solves will contain localized features that require very high resolution of the underlying finite element mesh to accurately solve, while a mesh with uniform resolution would require far too much computational time and memory overhead to be feasible on a modern machine. Therefore, techniques like adaptive mesh refinement, where one increases the resolution of the mesh only where it is necessary, must be used. Even with adaptive mesh refinement, these systems can still be on the order of much more than a million unknowns (large mantle convection applications like the ones in [90] show simulations on over 600 billion unknowns), and attempting to solve on a single processing unit is infeasible due to limited computational time and memory required. For this reason, any application code aimed at solving large problems must be built using a parallel framework, allowing the concurrent use of multiple processing units to solve a single problem, and the code must exhibit efficient scaling to large amounts of processing units. Multigrid methods are currently the only known optimal solvers for linear systems arising from discretizations of elliptic boundary valued problems. These methods can be represented as an iterative scheme with contraction number less than one, independent of the resolution of the discretization [24, 54, 25, 103], with optimal complexity in the number of unknowns in the system [29]. Geometric multigrid (GMG) methods, where the hierarchy of spaces are defined by linear systems of finite element discretizations on meshes of decreasing resolution, have been shown to be robust for many different problem formulations, giving mesh independent convergence for highly adaptive meshes [26, 61, 83, 18], but these methods require specific implementations for each type of equation, boundary condition, mesh, etc., required by the specific application. The implementation in a massively parallel environment is not obvious, and research into this topic is far from exhaustive. We present an implementation of a massively parallel, adaptive geometric multigrid (GMG) method used in the open-source finite element library deal.II [5], and perform extensive tests showing scaling of the v-cycle application on systems with up to 137 billion unknowns run on up to 65,536 processors, and demonstrating low communication overhead of the algorithms proposed. We then show the flexibility of the GMG by applying the method to four different PDE systems: the Poisson equation, linear elasticity, advection-diffusion, and the Stokes equations. For the Stokes equations, we implement a fully matrix-free, adaptive, GMG-based solver in the mantle convection code ASPECT [13], and give a comparison to the current matrix-based method used. We show improvements in robustness, parallel scaling, and memory consumption for simulations with up to 27 billion unknowns and 114,688 processors. Finally, we test the performance of IDR(s) methods compared to the FGMRES method currently used in ASPECT, showing the effects of the flexible preconditioning used for the Stokes solves in ASPECT, and the demonstrating the possible reduction in memory consumption for IDR(s) and the potential for solving large scale problems. Parts of the work in this thesis has been submitted to peer reviewed journals in the form of two publications ([36] and [34]), and the implementations discussed have been integrated into two open-source codes, deal.II and ASPECT. From the contributions to deal.II, including a full length tutorial program, Step-63 [35], the author is listed as a contributing author to the newest deal.II release (see [5]). The implementation into ASPECT is based on work from the author and Timo Heister. The goal for the work here is to enable the community of geoscientists using ASPECT to solve larger problems than currently possible. Over the course of this thesis, the author was partially funded by the NSF Award OAC-1835452 and by the Computational Infrastructure in Geodynamics initiative (CIG), through the NSF under Award EAR-0949446 and EAR-1550901 and The University of California -- Davis

    Analysis and massively parallel implementation of the 2-Lagrange multiplier methods and optimized Schwarz methods

    Get PDF
    Engineering and Physical Sciences Research Council (EPSRC) grant EP/G036136/1

    Numerical solution of 3-D electromagnetic problems in exploration geophysics and its implementation on massively parallel computers

    Get PDF
    The growing significance, technical development and employment of electromagnetic (EM) methods in exploration geophysics have led to the increasing need for reliable and fast techniques of interpretation of 3-D EM data sets acquired in complex geological environments. The first and most important step to creating an inversion method is the development of a solver for the forward problem. In order to create an efficient, reliable and practical 3-D EM inversion, it is necessary to have a 3-D EM modelling code that is highly accurate, robust and very fast. This thesis focuses precisely on this crucial and very demanding step to building a 3-D EM interpretation method. The thesis presents as its main contribution a highly accurate, robust, very fast and extremely scalable numerical method for 3-D EM modelling in geophysics that is based on finite elements (FE) and designed to run on massively parallel computing platforms. Thanks to the fact that the FE approach supports completely unstructured tetrahedral meshes as well as local mesh refinements, the presented solver is able to represent complex geometries of subsurface structures very precisely and thus improve the solution accuracy and avoid misleading artefacts in images. Consequently, it can be successfully used in geological environments of arbitrary geometrical complexities. The parallel implementation of the method, which is based on the domain decomposition and a hybrid MPI-OpenMP scheme, has proved to be highly scalable - the achieved speed-up is close to the linear for more than a thousand processors. Thanks to this, the code is able to deal with extremely large problems, which may have hundreds of millions of degrees of freedom, in a very efficient way. The importance of having this forward-problem solver lies in the fact that it is now possible to create a 3-D EM inversion that can deal with data obtained in extremely complex geological environments in a way that is realistic for practical use in industry. So far, such imaging tool has not been proposed due to a lack of efficient, parallel FE solutions as well as the limitations of efficient solvers based on finite differences. In addition, the thesis discusses physical, mathematical and numerical aspects and challenges of 3-D EM modelling, which have been studied during my research in order to properly design the presented software for EM field simulations on 3-D areas of the Earth. Through this work, a physical problem formulation based on the secondary Coulomb-gauged EM potentials has been validated, proving that it can be successfully used with the standard nodal FE method to give highly accurate numerical solutions. Also, this work has shown that Krylov subspace iterative methods are the best solution for solving linear systems that arise after FE discretisation of the problem under consideration. More precisely, it has been discovered empirically that the best iterative method for this kind of problems is biconjugate gradient stabilised with an elaborate preconditioner. Since most commonly used preconditioners proved to be either unable to improve the convergence of the implemented solvers to the desired extent, or impractical in the parallel context, I have proposed a preconditioning technique for Krylov methods that is based on algebraic multigrid. Tests for various problems with different conductivity structures and characteristics have shown that the new preconditioner greatly improves the convergence of different Krylov subspace methods, which significantly reduces the total execution time of the program and improves the solution quality. Furthermore, the preconditioner is very practical for parallel implementation. Finally, it has been concluded that there are not any restrictions in employing classical parallel programming models, MPI and OpenMP, for parallelisation of the presented FE solver. Moreover, they have proved to be enough to provide an excellent scalability for it

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    This workshop was well attended by 52 participants with broad geographic representation from 11 countries and 3 continents. It was a nice blend of researchers with various backgrounds
    corecore