43,949 research outputs found

    Four basic symmetry types in the universal 7-cluster structure of 143 complete bacterial genomic sequences

    Get PDF
    Coding information is the main source of heterogeneity (non-randomness) in the sequences of bacterial genomes. This information can be naturally modeled by analysing cluster structures in the ``in-phase'' triplet distributions of relatively short genomic fragments (200-400bp). We found a universal 7-cluster structure in all 143 completely sequenced bacterial genomes available in Genbank in August 2004, and explained its properties. The 7-cluster structure is responsible for the main part of sequence heterogeneity in bacterial genomes. In this sense, our 7 clusters is the basic model of bacterial genome sequence. We demonstrated that there are four basic ``pure'' types of this model, observed in nature: ``parallel triangles'', ``perpendicular triangles'', degenerated case and the flower-like type. We show that codon usage of bacterial genomes is a multi-linear function of their genomic G+C-content with high accuracy (more precisely, by two similar functions, one for eubacterial genomes and the other one for archaea). All 143 cluster animated 3D-scatters are collected in a database and is made available on our web-site: http://www.ihes.fr/~zinovyev/7clusters The finding can be readily introduced into any software for gene prediction, sequence alignment or bacterial genomes classification

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa

    Transcription analysis of apple fruit development using cDNA microarrays

    Get PDF
    The knowledge of the molecular mechanisms underlying fruit quality traits is fundamental to devise efficient marker-assisted selection strategies and to improve apple breeding. In this study, cDNA microarray technology was used to identify genes whose expression changes during fruit development and maturation thus potentially involved in fruit quality traits. The expression profile of 1,536 transcripts was analysed by microarray hybridisation. A total of 177 genes resulted to be differentially expressed in at least one of the developmental stages considered. Gene ontology annotation was employed to univocally describe gene function, while cluster analysis allowed grouping genes according to their expression profile. An overview of the transcriptional changes and of the metabolic pathways involved in fruit development was obtained. As expected, August and September are the two months where the largest number of differentially expressed genes was observed. In particular, 85 genes resulted to be up-regulated in September. Even though most of the differentially expressed genes are involved in primary metabolism, several other interesting functions were detected and will be presented

    The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Get PDF
    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP

    454 screening of individual MHC variation in an endemic island passerine

    Get PDF
    Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly been used in the last decade to genotype the MHC. However, NGS methods are highly prone to sequencing errors, and although several methodologies have been proposed to deal with this, until recently there have been no standard guidelines for the validation of putative MHC alleles. In this study, we used the 454 NGS platform to screen MHC class I exon 3 variation in a population of the island endemic Berthelot’s pipit (Anthus berthelotii). We were able to characterise MHC genotypes across 309 individuals with high levels of repeatability. We were also able to determine alleles that had low amplification efficiencies, whose identification within individuals may thus be less reliable. At the population level we found lower levels of MHC diversity in Berthelot’s pipit than in its widespread continental sister species the tawny pipit (Anthus campestris), and observed trans-species polymorphism. Using the sequence data, we identified signatures of gene conversion and evidence of maintenance of functionally divergent alleles in Berthelot’s pipit. We also detected positive selection at 10 codons. The present study therefore shows that we have an efficient method for screening individual MHC variation across large datasets in Berthelot’s pipit, and provides data that can be used in future studies investigating spatio-temporal patterns and scales of selection on the MHC
    • 

    corecore