57 research outputs found

    Fabric-on-a-Chip: Toward Consolidating Packet Switching Functions on Silicon

    Get PDF
    The switching capacity of an Internet router is often dictated by the memory bandwidth required to bu¤er arriving packets. With the demand for greater capacity and improved service provisioning, inherent memory bandwidth limitations are encountered rendering input queued (IQ) switches and combined input and output queued (CIOQ) architectures more practical. Output-queued (OQ) switches, on the other hand, offer several highly desirable performance characteristics, including minimal average packet delay, controllable Quality of Service (QoS) provisioning and work-conservation under any admissible traffic conditions. However, the memory bandwidth requirements of such systems is O(NR), where N denotes the number of ports and R the data rate of each port. Clearly, for high port densities and data rates, this constraint dramatically limits the scalability of the switch. In an effort to retain the desirable attributes of output-queued switches, while significantly reducing the memory bandwidth requirements, distributed shared memory architectures, such as the parallel shared memory (PSM) switch/router, have recently received much attention. The principle advantage of the PSM architecture is derived from the use of slow-running memory units operating in parallel to distribute the memory bandwidth requirement. At the core of the PSM architecture is a memory management algorithm that determines, for each arriving packet, the memory unit in which it will be placed. However, to date, the computational complexity of this algorithm is O(N), thereby limiting the scalability of PSM switches. In an effort to overcome the scalability limitations, it is the goal of this dissertation to extend existing shared-memory architecture results while introducing the notion of Fabric on a Chip (FoC). In taking advantage of recent advancements in integrated circuit technologies, FoC aims to facilitate the consolidation of as many packet switching functions as possible on a single chip. Accordingly, this dissertation introduces a novel pipelined memory management algorithm, which plays a key role in the context of on-chip output- queued switch emulation. We discuss in detail the fundamental properties of the proposed scheme, along with hardware-based implementation results that illustrate its scalability and performance attributes. To complement the main effort and further support the notion of FoC, we provide performance analysis of output queued cell switches with heterogeneous traffic. The result is a flexible tool for obtaining bounds on the memory requirements in output queued switches under a wide range of tra¢ c scenarios. Additionally, we present a reconfigurable high-speed hardware architecture for real-time generation of packets for the various traffic scenarios. The work presented in this thesis aims at providing pragmatic foundations for designing next-generation, high-performance Internet switches and routers

    Analysis and Simulation of a Parallel Packet Switch for Satellite On-board Switching

    Get PDF
    In this paper we consider a packet switching system composed of X parallel switching planes operating independently and at a speed lower than the input lines. Arriving traffic is segmented into fixed length cells, then each cell is sent to one of the X planes, where it is switched to the correct output port and finally recombined with the other cells, coming from other planes, to reconstruct the original packet. This architecture, originally proposed by Iyer and McKeown [1], is referred to as a Parallel Packet Switch (PPS) and allows to design a switching fabric operating at a fraction of the line rate R. A PPS, with planes operating at rate r, must have at least k=R/r planes to avoid systematic packet losses. In [1] it was proved that a PPS can emulate the behavior of an Output Queue Switch (OQS) with the same buffering capabilities and the same number of ports. However, the centralized scheduling algorithm required to achieve this result can not be easily implemented in hardware, due to its complexity. In this paper we propose a Redundant Parallel Packet Switch (RePPS), i.e. a PPS with more than k planes, with a distributed scheduling algorithm, and multiplexing/demultiplexing stages without coordination buffers, which is a fair trade-off between performance and complexity. In particular we show that the minimum number n = X - k of redundant planes required to emulate an OQS with FIFO policy under any incoming traffic type is n = k2-2k+1. The distributed scheduling algorithm, which is the key component of the proposed switch, is presented and its performance, analyzed thru simulation, is discussed for a realistic fabric with a limited number of redundant planes. The results so far obtained suggest a possible application of this architecture for satellite on-board packet switches

    Reconfigurable microarchitectures at the programmable logic interface

    Get PDF

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. Specifically, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    An Overview of the AURORA Gigabit Testbed

    Get PDF
    AURORA is one of five U.S. testbeds charged with exploring applications of, and technologies necessary for, networks operating at gigabit per second or higher bandwidths. AURORA is also an experiment in collaboration, where government support (through the Corporation for National Research Initiatives, which is in turn funded by DARPA and the NSF) has spurred interaction among centers of excellence in industry, academia, and government. The emphasis of the AURORA testbed, distinct from the other four testbeds, is research into the supporting technologies for gigabit networking. Our targets include new software architectures, network abstractions, hardware technologies, and applications. This paper provides an overview of the goals and methodologies employed in AURORA, and reports preliminary results from our first year of research

    Performance Analysis in IP-Based Industrial Communication Networks

    Get PDF
    S rostoucím počtem řídicích systémů a jejich distribuovanosti získávájí komunikační sítě na důležitosti a objevují se nové výzkumné trendy. Hlavní problematikou v této oblasti, narozdíl od dřívějších řídicích systémů využívajících dedikovaných komunikačních obvodů, je časově proměnné zpoždění měřicích a řídicích signálů způsobené paketově orientovanými komunikačními prostředky, jako např. Ethernet. Aspekty komunikace v reálném čase byly v těchto sítích již úspěšně vyřešeny. Nicméně, analýzy trendů trhu předpovídají budoucí využití také IP sítí v průmyslové komunikaci pro časově kritickou procesní vyměnu dat. IP komunikace má ovšem pouze omezenou podporu v instrumentaci pro průmyslovou automatizace. Tato výzva byla nedávno technicky vyřešena v rámci projektu Virtual Automation Networks (virtuální automatizační sítě - VAN) zapojením mechanismů kvality služeb (QoS), které jsou schopny zajistit měkkou úroveň komunikace v reálném čase. Předložená dizertační práce se zaměřuje na aspekty výkonnosti reálného času z analytického hlediska a nabízí prostředek pro hodnocení využitelnosti IP komunikace pro budoucí průmyslové aplikace. Hlavním cílem této dizertační práce je vytvoření vhodného modelovacího rámce založeného na network calculus, který pomůže provést worst-case výkonnostní analýzu časového chování IP komunikačních sítí a jejich prvků určených pro budoucí použití v průmyslové automatizaci. V práci byla použita empirická analýza pro určení dominantních faktorů ovlivňujících časového chování síťových zařízení a identifikaci parametrů modelů těchto zařízení. Empirická analýza využívá nástroj TestQoS vyvinutý pro tyto účely. Byla navržena drobná rozšíření rámce network calculus, která byla nutná pro modelování časového chování používaných zařízení. Bylo vytvořeno několik typových modelů zařízení jako výsledek klasifikace různých architektur síťových zařízení a empiricky zjištěných dominantních faktorů. U modelovaných zařízení byla využita nová metoda identifikace parametrů. Práce je zakončena validací časových modelů dvou síťových zařízení (přepínače a směrovače) oproti empirickým pozorováním.With the growing scale of control systems and their distributed nature, communication networks have been gaining importance and new research challenges have been appearing. The major problem, contrary to previously used control systems with dedicated communication circuits, is time-varying delay of control and measurement signals introduced by packet-switched networks, such as Ethernet. The real-time issues in these networks have been tackled by proper adaptations. Nevertheless, market trend analyses foresee also future adoptions of IP-based communication networks in industrial automation for time-critical run-time data exchange. IP-based communication has only a limited support from the existing instrumentation in industrial automation. This challenge has recently been technically tackled within the Virtual Automation Networks (VAN) project by adopting the quality of service (QoS) architecture delivering soft-real-time communication behaviour. This dissertation focuses on the real-time performance aspects from the analytical point of view and provides means for applicability assessment of IP-based communication for future industrial applications. The main objective of this dissertation is establishment of a relevant modelling framework based on network calculus which will assist worst-case performance analysis of temporal behaviour of IP-based communication networks and networking devices intended for future use in industrial automation. Empirical analysis was used to identify dominant factors influencing the temporal performance of networking devices and for model parameter identification. The empirical analysis makes use of the TestQoS tool developed for this purpose. Minor extensions to the network calculus framework were proposed enabling to model the required temporal behaviour of networking devices. Several exemplary models were inferred as a result of classification of different networking device architectures and empirically identified dominant factors. A novel method for parameter identification was used with the modelled devices. Finally, two temporal models of networking devices (a switch and a router) were validated against empirical observations.

    The AURORA Gigabit Testbed

    Get PDF
    AURORA is one of five U.S. networking testbeds charged with exploring applications of, and technologies necessary for, networks operating at gigabit per second or higher bandwidths. The emphasis of the AURORA testbed, distinct from the other four testbeds, BLANCA, CASA, NECTAR, and VISTANET, is research into the supporting technologies for gigabit networking. Like the other testbeds, AURORA itself is an experiment in collaboration, where government initiative (in the form of the Corporation for National Research Initiatives, which is funded by DARPA and the National Science Foundation) has spurred interaction among pre-existing centers of excellence in industry, academia, and government. AURORA has been charged with research into networking technologies that will underpin future high-speed networks. This paper provides an overview of the goals and methodologies employed in AURORA, and points to some preliminary results from our first year of research, ranging from analytic results to experimental prototype hardware. This paper enunciates our targets, which include new software architectures, network abstractions, and hardware technologies, as well as applications for our work
    corecore