1,569 research outputs found

    Computation of elementary modes: a unifying framework and the new binary approach

    Get PDF
    BACKGROUND: Metabolic pathway analysis has been recognized as a central approach to the structural analysis of metabolic networks. The concept of elementary (flux) modes provides a rigorous formalism to describe and assess pathways and has proven to be valuable for many applications. However, computing elementary modes is a hard computational task. In recent years we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view and a continued improvement of the current methods. RESULTS: We show that computing the set of elementary modes is equivalent to computing the set of extreme rays of a convex cone. This standard mathematical representation provides a unified framework that encompasses the most prominent algorithmic methods that compute elementary modes and allows a clear comparison between them. Taking lessons from this benchmark, we here introduce a new method, the binary approach, which computes the elementary modes as binary patterns of participating reactions from which the respective stoichiometric coefficients can be computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a software that is free for academics. The binary approach decreases the memory demand up to 96% without loss of speed giving the most efficient method available for computing elementary modes to date. CONCLUSIONS: The equivalence between elementary modes and extreme ray computations offers opportunities for employing tools from polyhedral computation for metabolic pathway analysis. The new binary approach introduced herein was derived from this general theoretical framework and facilitates the computation of elementary modes in considerably larger networks

    Exploiting the pathway structure of metabolism to reveal high-order epistasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological robustness results from redundant pathways that achieve an essential objective, e.g. the production of biomass. As a consequence, the biological roles of many genes can only be revealed through multiple knockouts that identify a <it>set </it>of genes as essential for a given function. The identification of such "epistatic" essential relationships between network components is critical for the understanding and eventual manipulation of robust systems-level phenotypes.</p> <p>Results</p> <p>We introduce and apply a network-based approach for genome-scale metabolic knockout design. We apply this method to uncover over 11,000 minimal knockouts for biomass production in an <it>in silico </it>genome-scale model of <it>E. coli</it>. A large majority of these "essential sets" contain 5 or more reactions, and thus represent complex epistatic relationships between components of the <it>E. coli </it>metabolic network.</p> <p>Conclusion</p> <p>The complex minimal biomass knockouts discovered with our approach illuminate robust essential systems-level roles for reactions in the <it>E. coli </it>metabolic network. Unlike previous approaches, our method yields results regarding high-order epistatic relationships and is applicable at the genome-scale.</p

    Metabolic Pathway Analysis: from small to genome-scale networks

    Get PDF
    The need for mathematical modelling of biological processes has grown alongside with the achievements in the experimental field leading to the appearance and development of new fields like systems biology. Systems biology aims at generating new knowledge through modelling and integration of experimental data in order to develop a holistic understanding of organisms. In the first part of my PhD thesis, I compare two different levels of abstraction used for computing metabolic pathways, constraint-based and graph theoretical methods. I show that the current representations of metabolism as a simple graph correspond to wrong mathematical descriptions of metabolic pathways. On the other hand, the use of stoichiometric information and convex analysis as modelling framework like in elementary flux mode analysis, allows to correctly predict metabolic pathways. In the second part of the thesis, I present two of the first methods, based on elementary flux mode analysis, that can compute metabolic pathways in such large metabolic networks: the K-shortest EFMs method and the EFMEvolver method. These methods contribute to an enrichment of the mathematical tools available to model cell biology and more precisely, metabolism. The application of these new methods to biotechnological problems is also explored in this part. In the last part of my thesis, I give an overview of recent achievements in metabolic network reconstruction and constraint-based modelling as well as open issues. Moreover, I discuss possible strategies for integrating experimental data with elementary flux mode analysis. Further improvements in elementary flux mode computation on that direction are put forward

    Die Integration von Multiskalen- und Multi-Omik-Daten zur Erforschung von Wirt-Pathogen-Interaktionen am Beispiel von pathogenen Pilzen

    Get PDF
    The ongoing development and improvement of novel measurement techniques for scientific research result in a huge amount of available data coming from hetero- geneous sources. Amongst others, these sources comprise diverse temporal and spatial scales including different omics levels. The integration of such multiscale and multi-omics data enables a comprehensive understanding of the complexity and dynamics of biological systems and their processes. However, due to the biologically and methodically induced data heterogeneity, the integration process is a well-known challenge in nowadays life science. Applying several computational integration approaches, the present doctoral thesis aimed at gaining new insights into the field of infection biology regarding host- pathogen interactions. In this context, the focus was on fungal pathogens causing a variety of local and systemic infections. Based on current examples of research, on the one hand, several well-established approaches for the analysis of multiscale and multi- omics data have been presented. On the other hand, the novel ModuleDiscoverer approach was introduced to identify regulatory modules in protein-protein interac- tion networks. It has been shown that ModuleDiscoverer effectively supports the integration of multi-omics data and, in addition, allows the detection of potential key factors that cannot be detected by other classical approaches. This thesis provides deeper insights into the complex relationships and dynamics of biological systems and, thus, represents an important contribution to the investigation of host-pathogen interactions. Due to the interactions complexity and the limitations of the currently available knowledge databases as well as the bioinformatic tools, further research is necessary to gain a comprehensive understanding of the complexity of biological systems

    Computational strategies for a system-level understanding of metabolism

    Get PDF
    Cell metabolism is the biochemical machinery that provides energy and building blocks to sustain life. Understanding its fine regulation is of pivotal relevance in several fields, from metabolic engineering applications to the treatment of metabolic disorders and cancer. Sophisticated computational approaches are needed to unravel the complexity of metabolism. To this aim, a plethora of methods have been developed, yet it is generally hard to identify which computational strategy is most suited for the investigation of a specific aspect of metabolism. This review provides an up-to-date description of the computational methods available for the analysis of metabolic pathways, discussing their main advantages and drawbacks. In particular, attention is devoted to the identification of the appropriate scale and level of accuracy in the reconstruction of metabolic networks, and to the inference of model structure and parameters, especially when dealing with a shortage of experimental measurements. The choice of the proper computational methods to derive in silico data is then addressed, including topological analyses, constraint-based modeling and simulation of the system dynamics. A description of some computational approaches to gain new biological knowledge or to formulate hypotheses is finally provided

    Probe Project Status and Accomplishments - Year Two

    Full text link

    Genome-Wide Profiling of H3K56 Acetylation and Transcription Factor Binding Sites in Human Adipocytes

    Get PDF
    The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte transcriptional regulation.Singapore. Agency for Science, Technology and Research (National Science Scholarship )Massachusetts Institute of Technology (Eugene Bell Career Development Chair)National Science Foundation (U.S.) (Award No. DBI-0821391)Pfizer Inc

    Elementary approaches to microbial growth rate maximisation

    Get PDF
    This thesis, called Elementary approaches to microbial growth rate maximisation, reports on a theoretical search for principles underlying single cell growth, in particular for microbial species that are selected for fast growth rates. First, the optimally growing cell is characterised in terms of its elementary modes. We prove an extremum principle: a cell that maximises a metabolic rate uses few Elementary Flux Modes (EFMs, the minimal pathways that support steady-state metabolism). The number of active EFMs is bounded by the number of growth-limiting constraints. Later, this extremum principle is extended in a theory that explicitly accounts for self-fabrication. For this, we had to define the elementary modes that underlie balanced self-fabrication: minimal self-supporting sets of expressed enzymes that we call Elementary Growth Modes (EGMs). It turns out that many of the results for EFMs can be extended to their more general self-fabrication analogue. Where the above extremum principles tell us that few elementary modes are used by a rate-maximising cell, it does not tell us how the cell can find them. Therefore, we also search for an elementary adaptation method. It turns out that stochastic phenotype switching with growth rate dependent switching rates provides an adaptation mechanism that is often competitive with more conventional regulatory-circuitry based mechanisms. The derived theory is applied in two ways. First, the extremum principles are used to review the mathematical fundaments of all optimisation-based explanations of overflow metabolism. Second, a computational tool is presented that enumerates Elementary Conversion Modes. These elementary modes can be computed for larger networks than EFMs and EGMs, and still provide an overview of the metabolic capabilities of an organism
    • …
    corecore