933 research outputs found

    Quadratically-Regularized Optimal Transport on Graphs

    Full text link
    Optimal transportation provides a means of lifting distances between points on a geometric domain to distances between signals over the domain, expressed as probability distributions. On a graph, transportation problems can be used to express challenging tasks involving matching supply to demand with minimal shipment expense; in discrete language, these become minimum-cost network flow problems. Regularization typically is needed to ensure uniqueness for the linear ground distance case and to improve optimization convergence; state-of-the-art techniques employ entropic regularization on the transportation matrix. In this paper, we explore a quadratic alternative to entropic regularization for transport over a graph. We theoretically analyze the behavior of quadratically-regularized graph transport, characterizing how regularization affects the structure of flows in the regime of small but nonzero regularization. We further exploit elegant second-order structure in the dual of this problem to derive an easily-implemented Newton-type optimization algorithm.Comment: 27 page

    libNMF -- A Library for Nonnegative Matrix Factorization

    Get PDF
    We present libNMF -- a computationally efficient high performance library for computing nonnegative matrix factorizations (NMF) written in C. Various algorithms and algorithmic variants for computing NMF are supported. libNMF is based on external routines from BLAS (Basic Linear Algebra Subprograms), LAPack (Linear Algebra package) and ARPack, which provide efficient building blocks for performing central vector and matrix operations. Since modern BLAS implementations support multi-threading, libNMF can exploit the potential of multi-core architectures. In this paper, the basic NMF algorithms contained in libNMF and existing implementations found in the literature are briefly reviewed. Then, libNMF is evaluated in terms of computational efficiency and numerical accuracy and compared with the best existing codes available. libNMF is publicly available at http://rlcta.univie.ac.at/software

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page
    • …
    corecore