7,418 research outputs found

    ADVANCES IN KNOWLEDGE DISCOVERY IN DATABASES

    Get PDF
    The Knowledge Discovery in Databases and Data Mining field proposes the development of methods and techniques for assigning useful meanings for data stored in databases. It gathers researches from many study fields like machine learning, pattern recognition, databases, statistics, artificial intelligence, knowledge acquisition for expert systems, data visualization and grids. While Data Mining represents a set of specific algorithms of finding useful meanings in stored data, Knowledge Discovery in Databases represents the overall process of finding knowledge and includes the Data Mining as one step among others such as selection, pre�processing, transformation and interpretation of mined data. This paper aims to point the most important steps that were made in the Knowledge Discovery in Databases field of study and to show how the overall process of discovering can be improved in the future.

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    Interactive Visualization of the Largest Radioastronomy Cubes

    Full text link
    3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our framework's performance. The framework can render the GASS data cube with a maximum render time < 0.3 second with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.Comment: 15 pages, 12 figures, Accepted New Astronomy July 201

    Building accurate radio environment maps from multi-fidelity spectrum sensing data

    Get PDF
    In cognitive wireless networks, active monitoring of the wireless environment is often performed through advanced spectrum sensing and network sniffing. This leads to a set of spatially distributed measurements which are collected from different sensing devices. Nowadays, several interpolation methods (e.g., Kriging) are available and can be used to combine these measurements into a single globally accurate radio environment map that covers a certain geographical area. However, the calibration of multi-fidelity measurements from heterogeneous sensing devices, and the integration into a map is a challenging problem. In this paper, the auto-regressive co-Kriging model is proposed as a novel solution. The algorithm is applied to model measurements which are collected in a heterogeneous wireless testbed environment, and the effectiveness of the new methodology is validated

    Adaptive remote visualization system with optimized network performance for large scale scientific data

    Get PDF
    This dissertation discusses algorithmic and implementation aspects of an automatically configurable remote visualization system, which optimally decomposes and adaptively maps the visualization pipeline to a wide-area network. The first node typically serves as a data server that generates or stores raw data sets and a remote client resides on the last node equipped with a display device ranging from a personal desktop to a powerwall. Intermediate nodes can be located anywhere on the network and often include workstations, clusters, or custom rendering engines. We employ a regression model-based network daemon to estimate the effective bandwidth and minimal delay of a transport path using active traffic measurement. Data processing time is predicted for various visualization algorithms using block partition and statistical technique. Based on the link measurements, node characteristics, and module properties, we strategically organize visualization pipeline modules such as filtering, geometry generation, rendering, and display into groups, and dynamically assign them to appropriate network nodes to achieve minimal total delay for post-processing or maximal frame rate for streaming applications. We propose polynomial-time algorithms using the dynamic programming method to compute the optimal solutions for the problems of pipeline decomposition and network mapping under different constraints. A parallel based remote visualization system, which comprises a logical group of autonomous nodes that cooperate to enable sharing, selection, and aggregation of various types of resources distributed over a network, is implemented and deployed at geographically distributed nodes for experimental testing. Our system is capable of handling a complete spectrum of remote visualization tasks expertly including post processing, computational steering and wireless sensor network monitoring. Visualization functionalities such as isosurface, ray casting, streamline, linear integral convolution (LIC) are supported in our system. The proposed decomposition and mapping scheme is generic and can be applied to other network-oriented computation applications whose computing components form a linear arrangement

    NASA high performance computing and communications program

    Get PDF
    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project

    Research summary, January 1989 - June 1990

    Get PDF
    The Research Institute for Advanced Computer Science (RIACS) was established at NASA ARC in June of 1983. RIACS is privately operated by the Universities Space Research Association (USRA), a consortium of 62 universities with graduate programs in the aerospace sciences, under a Cooperative Agreement with NASA. RIACS serves as the representative of the USRA universities at ARC. This document reports our activities and accomplishments for the period 1 Jan. 1989 - 30 Jun. 1990. The following topics are covered: learning systems, networked systems, and parallel systems

    Supercomputer networking for space science applications

    Get PDF
    The initial design of a supercomputer network topology including the design of the communications nodes along with the communications interface hardware and software is covered. Several space science applications that are proposed experiments by GSFC and JPL for a supercomputer network using the NASA ACTS satellite are also reported
    • …
    corecore