468 research outputs found

    An Improvement of the Piggyback Algorithm for Parallel Model Checking

    Get PDF
    This paper extends the piggyback algorithm to enlarge the set of liveness properties it can verify. Its extension is motivated by an attempt to express in logic the counterexamples it can detect and relate them to bounded liveness. The original algorithm is based on parallel breadth-first search and piggybacking of accepting states that are deleted after counting a fixed number of transitions. The main improvement is obtained by renewing the counter of transitions when the same accepting states are visited in the negated property automaton. In addition, we describe piggybacking of multiple states in either sets (exact) or Bloom filters (lossy but conservative), and use of local searches that attempt to connect cycles fragmented among processing cores. Finally it is proved that accepting cycle detection is in NC in the size of the product automaton's entire state space, including unreachable states

    Variations on Multi-Core Nested Depth-First Search

    Get PDF
    Recently, two new parallel algorithms for on-the-fly model checking of LTL properties were presented at the same conference: Automated Technology for Verification and Analysis, 2011. Both approaches extend Swarmed NDFS, which runs several sequential NDFS instances in parallel. While parallel random search already speeds up detection of bugs, the workers must share some global information in order to speed up full verification of correct models. The two algorithms differ considerably in the global information shared between workers, and in the way they synchronize. Here, we provide a thorough experimental comparison between the two algorithms, by measuring the runtime of their implementations on a multi-core machine. Both algorithms were implemented in the same framework of the model checker LTSmin, using similar optimizations, and have been subjected to the full BEEM model database. Because both algorithms have complementary advantages, we constructed an algorithm that combines both ideas. This combination clearly has an improved speedup. We also compare the results with the alternative parallel algorithm for accepting cycle detection OWCTY-MAP. Finally, we study a simple statistical model for input models that do contain accepting cycles. The goal is to distinguish the speedup due to parallel random search from the speedup that can be attributed to clever work sharing schemes.Comment: In Proceedings PDMC 2011, arXiv:1111.006

    LTSmin: high-performance language-independent model checking

    Get PDF
    In recent years, the LTSmin model checker has been extended with support for several new modelling languages, including probabilistic (Mapa) and timed systems (Uppaal). Also, connecting additional language front-ends or ad-hoc state-space generators to LTSmin was simplified using custom C-code. From symbolic and distributed reachability analysis and minimisation, LTSmin’s functionality has developed into a model checker with multi-core algorithms for on-the-fly LTL checking with partial-order reduction, and multi-core symbolic checking for the modal μ calculus, based on the multi-core decision diagram package Sylvan.\ud In LTSmin, the modelling languages and the model checking algorithms are connected through a Partitioned Next-State Interface (Pins), that allows to abstract away from language details in the implementation of the analysis algorithms and on-the-fly optimisations. In the current paper, we present an overview of the toolset and its recent changes, and we demonstrate its performance and versatility in two case studies

    Random walk based heuristic algorithms for distributed memory model checking

    Get PDF
    technical reportModel checking techniques suffer from the state space explosion problem: as the size of the system being verified increases, the total state space of the system increases exponentially. Some of the methods that have been devised to tackle this problem are partial order reduction, symmetry reduction, hash compaction, selective state caching, etc. One approach to the problem that has gained interest in recent years is the parallelization of model checking algorithms. A random walk on the state space has some nice properties, the most important of which is the fact that it lends itself to being parallelized in a natural way. Random walk is a low overhead and a partial search method. Breadth first search, on the other hand, is a high overhead and a full search technique. In this article, we propose various heuristic algorithms that combine random walks on the state space with bounded breadth first search in a parallel context. These algorithms are in the process of being incorporated into a distributed memory model checker
    corecore