7,828 research outputs found

    Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates

    Get PDF
    We show that single component metallic glasses can be synthesized by thermal spray coating of nanodroplets onto an amorphous substrate. We demonstrate this using molecular dynamics simulations of nanodroplets up to 30 nm that the spreading of the nanodroplets during impact on a substrate leads to sufficiently rapid cooling (10^(12)–10^(13) K/s) sustained by the large temperature gradients between the thinned nanodroplets and the bulk substrate. However, even under these conditions, in order to ensure that the glass transition outruns crystal nucleation, it is essential that the substrate be amorphous (eliminating sites for heterogeneous nucleation of crystallization)

    Liquid metals: early contributions and some recent developments

    Full text link
    We illustrate in this contribution the progress in the theoretical study of liquid metals made in the last decades, starting from the example of liquid gallium and the early work in Jean-Pierre Badiali's group. This was based on the combination of the perturbation theory with pseudo-potentials for the electrons and the liquid state theory for the ions. More recent developments combining ab initio and classical molecular dynamics simulations are finally illustrated on the example of glass forming alloys.Comment: 12 pages, 8 figure

    Molecular Dynamics Simulations of Lead and Lithium in Liquid Phase

    Get PDF
    Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase

    From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour

    Full text link
    Nanocrystalline metals contain a large fraction of high-energy grain boundaries, which may be considered as glassy phases. Consequently, with decreasing grain size, a crossover in the deformation behaviour of nanocrystals to that of metallic glasses has been proposed. Here, we study this crossover using molecular dynamics simulations on bulk glasses, glass-crystal nanocomposites, and nanocrystals of Cu64Zr36 with varying crystalline volume fractions induced by long-time thermal annealing. We find that the grain boundary phase behaves like a metallic glass under constraint from the abutting crystallites. The transition from glass-like to grain-boundary-mediated plasticity can be classified into three regimes: (1) For low crystalline volume fractions, the system resembles a glass-crystal composite and plastic flow is localised in the amorphous phase; (2) with increasing crystalline volume fraction, clusters of crystallites become jammed and the mechanical response depends critically on the relaxation state of the glassy grain boundaries; (3) at grain sizes \geq 10 nm, the system is jammed completely, prohibiting pure grain-boundary plasticity and instead leading to co-deformation. We observe an inverse Hall-Petch effect only in the second regime when the grain boundary is not deeply relaxed. Experimental results with different grain boundary states are therefore not directly comparable in this regime.Comment: 19 pages, 17 figure
    corecore