1,180 research outputs found

    Parallel hierarchical sampling:a general-purpose class of multiple-chains MCMC algorithms

    Get PDF
    This paper introduces the Parallel Hierarchical Sampler (PHS), a class of Markov chain Monte Carlo algorithms using several interacting chains having the same target distribution but different mixing properties. Unlike any single-chain MCMC algorithm, upon reaching stationarity one of the PHS chains, which we call the “mother” chain, attains exact Monte Carlo sampling of the target distribution of interest. We empirically show that this translates in a dramatic improvement in the sampler’s performance with respect to single-chain MCMC algorithms. Convergence of the PHS joint transition kernel is proved and its relationships with single-chain samplers, Parallel Tempering (PT) and variable augmentation algorithms are discussed. We then provide two illustrative examples comparing the accuracy of PHS with

    RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language.

    Get PDF
    Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.]

    An alternative marginal likelihood estimator for phylogenetic models

    Get PDF
    Bayesian phylogenetic methods are generating noticeable enthusiasm in the field of molecular systematics. Many phylogenetic models are often at stake and different approaches are used to compare them within a Bayesian framework. The Bayes factor, defined as the ratio of the marginal likelihoods of two competing models, plays a key role in Bayesian model selection. We focus on an alternative estimator of the marginal likelihood whose computation is still a challenging problem. Several computational solutions have been proposed none of which can be considered outperforming the others simultaneously in terms of simplicity of implementation, computational burden and precision of the estimates. Practitioners and researchers, often led by available software, have privileged so far the simplicity of the harmonic mean estimator (HM) and the arithmetic mean estimator (AM). However it is known that the resulting estimates of the Bayesian evidence in favor of one model are biased and often inaccurate up to having an infinite variance so that the reliability of the corresponding conclusions is doubtful. Our new implementation of the generalized harmonic mean (GHM) idea recycles MCMC simulations from the posterior, shares the computational simplicity of the original HM estimator, but, unlike it, overcomes the infinite variance issue. The alternative estimator is applied to simulated phylogenetic data and produces fully satisfactory results outperforming those simple estimators currently provided by most of the publicly available software

    The behavior of metropolis-coupled Markov chains when sampling rugged phylogenetic distributions

    Get PDF
    © The Author(s) 2018. Bayesian phylogenetic inference relies on the use of Markov chain Monte Carlo (MCMC) to provide numerical approximations of high-dimensional integrals and estimate posterior probabilities. However, MCMC performs poorly when posteriors are very rugged (i.e., regions of high posterior density are separated by regions of low posterior density). One technique that has become popular for improving numerical estimates from MCMC when distributions are rugged is Metropolis coupling (MC3). InMC3, additional chains are employed to sample flattened transformations of the posterior and improve mixing. Here, we highlight several underappreciated behaviors of MC3. Notably, estimated posterior probabilities may be incorrect but appear to converge, when individual chains do not mixwell, despite different chains sampling trees from all relevant areas in tree space. Counter intuitively, such behavior can be more difficult to diagnose with increased numbers of chains. We illustrate these surprising behaviors of MC3 using a simple, non-phylogenetic example and phylogenetic examples involving both constrained and unconstrained analyses. To detect and mitigate the effects of these behaviors, we recommend increasing the number of independent analyses and varying the temperature of the hottest chain in current versions of Bayesian phylogenetic software. Convergence diagnostics based on the behavior of the hottest chain may also help detect these behaviors and could form a useful addition to future software releases

    ExaBayes: Massively Parallel Bayesian Tree Inference for the Whole-Genome Era

    Get PDF

    Accelerating Bayesian inference for evolutionary biology models.

    Get PDF
    Bayesian inference is widely used nowadays and relies largely on Markov chain Monte Carlo (MCMC) methods. Evolutionary biology has greatly benefited from the developments of MCMC methods, but the design of more complex and realistic models and the ever growing availability of novel data is pushing the limits of the current use of these methods. We present a parallel Metropolis-Hastings (M-H) framework built with a novel combination of enhancements aimed towards parameter-rich and complex models. We show on a parameter-rich macroevolutionary model increases of the sampling speed up to 35 times with 32 processors when compared to a sequential M-H process. More importantly, our framework achieves up to a twentyfold faster convergence to estimate the posterior probability of phylogenetic trees using 32 processors when compared to the well-known software MrBayes for Bayesian inference of phylogenetic trees. https://bitbucket.org/XavMeyer/hogan. [email protected]. Supplementary data are available at Bioinformatics online
    corecore