30,220 research outputs found

    Parallel computing and the generation of basic plasma data

    Get PDF
    Comprehensive simulations of the processing plasmas used in semiconductor fabrication will depend on the availability of basic data for many microscopic processes that occur in the plasma and at the surface. Cross sections for electron collisions, a principal mechanism for producing reactive species in these plasmas, are among the most important such data; however, electron-collision cross sections are difficult to measure, and the available data are, at best, sketchy for the polyatomic feed gases of interest. While computational approaches to obtaining such data are thus potentially of significant value, studies of electron collisions with polyatomic gases at relevant energies are numerically intensive. In this article, we report on the progress we have made in exploiting large-scale distributed-memory parallel computers, consisting of hundreds of interconnected microprocessors, to generate electron-collision cross sections for gases of interest in plasma simulations

    Three-Dimensional Wave Packet Approach for the Quantum Transport of Atoms through Nanoporous Membranes

    Full text link
    Quantum phenomena are relevant to the transport of light atoms and molecules through nanoporous two-dimensional (2D) membranes. Indeed, confinement provided by (sub-)nanometer pores enhances quantum effects such as tunneling and zero point energy (ZPE), even leading to quantum sieving of different isotopes of a given element. However, these features are not always taken into account in approaches where classical theories or approximate quantum models are preferred. In this work we present an exact three-dimensional wave packet propagation treatment for simulating the passage of atoms through periodic 2D membranes. Calculations are reported for the transmission of 3^3He and 4^4He through graphdiyne as well as through a holey graphene model. For He-graphdiyne, estimations based on tunneling-corrected transition state theory are correct: both tunneling and ZPE effects are very important but competition between each other leads to a moderately small 4^4He/3^3He selectivity. Thus, formulations that neglect one or another quantum effect are inappropriate. For the transport of He isotopes through leaky graphene, the computed transmission probabilities are highly structured suggesting widespread selective adsorption resonances and the resulting rate coefficients and selectivity ratios are not in agreement with predictions from transition state theory. Present approach serves as a benchmark for studies of the range of validity of more approximate methods.Comment: 4 figure

    Reactions at surfaces studied by ab initio dynamics calculations

    Full text link
    Due to the development of efficient algorithms and the improvement of computer power it is now possible to map out potential energy surfaces (PES) of reactions at surfaces in great detail. This achievement has been accompanied by an increased effort in the dynamical simulation of processes on surfaces. The paradigm for simple reactions at surfaces -- the dissociation of hydrogen on metal surfaces -- can now be treated fully quantum dynamically in the molecular degrees of freedom from first principles, i.e., without invoking any adjustable parameters. This relatively new field of ab initio dynamics simulations of reactions at surfaces will be reviewed. Mainly the dissociation of hydrogen on clean and adsorbate covered metal surfaces and on semiconductor surfaces will be discussed. In addition, the ab initio molecular dynamics treatment of reactions of hydrogen atoms with hydrogen-passivated semiconductor surfaces and recent achievements in the ab initio description of laser-induced desorption and further developments will be addressed.Comment: 33 pages, 19 figures, submitted to Surf. Sci. Rep. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    On the master equation approach to diffusive grain-surface chemistry: the H, O, CO system

    Full text link
    We have used the master equation approach to study a moderately complex network of diffusive reactions occurring on the surfaces of interstellar dust particles. This network is meant to apply to dense clouds in which a large portion of the gas-phase carbon has already been converted to carbon monoxide. Hydrogen atoms, oxygen atoms, and CO molecules are allowed to accrete onto dust particles and their chemistry is followed. The stable molecules produced are oxygen, hydrogen, water, carbon dioxide (CO2), formaldehyde (H2CO), and methanol (CH3OH). The surface abundances calculated via the master equation approach are in good agreement with those obtained via a Monte Carlo method but can differ considerably from those obtained with standard rate equations.Comment: 13 pages, 5 figure
    corecore