79 research outputs found

    Tabu Search: A Comparative Study

    Get PDF

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Job shop scheduling with artificial immune systems

    Get PDF
    The job shop scheduling is complex due to the dynamic environment. When the information of the jobs and machines are pre-defined and no unexpected events occur, the job shop is static. However, the real scheduling environment is always dynamic due to the constantly changing information and different uncertainties. This study discusses this complex job shop scheduling environment, and applies the AIS theory and switching strategy that changes the sequencing approach to the dispatching approach by taking into account the system status to solve this problem. AIS is a biological inspired computational paradigm that simulates the mechanisms of the biological immune system. Therefore, AIS presents appealing features of immune system that make AIS unique from other evolutionary intelligent algorithm, such as self-learning, long-lasting memory, cross reactive response, discrimination of self from non-self, fault tolerance, and strong adaptability to the environment. These features of AIS are successfully used in this study to solve the job shop scheduling problem. When the job shop environment is static, sequencing approach based on the clonal selection theory and immune network theory of AIS is applied. This approach achieves great performance, especially for small size problems in terms of computation time. The feature of long-lasting memory is demonstrated to be able to accelerate the convergence rate of the algorithm and reduce the computation time. When some unexpected events occasionally arrive at the job shop and disrupt the static environment, an extended deterministic dendritic cell algorithm (DCA) based on the DCA theory of AIS is proposed to arrange the rescheduling process to balance the efficiency and stability of the system. When the disturbances continuously occur, such as the continuous jobs arrival, the sequencing approach is changed to the dispatching approach that involves the priority dispatching rules (PDRs). The immune network theory of AIS is applied to propose an idiotypic network model of PDRs to arrange the application of various dispatching rules. The experiments show that the proposed network model presents strong adaptability to the dynamic job shop scheduling environment.postprin

    Machine and component residual life estimation through the application of neural networks

    Get PDF
    Analysis of reliability data plays an important role in the maintenance decision making process. The accurate estimation of residual life in components and systems can be a great asset when planning the preventive replacement of components on machines. Artificial intelligence is a field that has rapidly developed over the last twenty years and practical applications have been found in many diverse areas. The use of such methods in the maintenance field have however not yet been fully explored. With the common availability of condition monitoring data, another dimension has been added to the analysis of reliability data. Neural networks allow for explanatory variables to be incorporated into the analysis process. This is expected to improve the quality of predictions when compared to the results achieved through the use of methods that rely solely on failure time data. Neural networks can therefore be seen as an alternative to the various regression models, such as the proportional hazards model, which also incorporate such covariates into the analysis. For the purpose of investigating their applicability to the problem of predicting the residual life of machines and components, neural networks were trained and tested with the data of two different reliability related datasets. The first dataset represents the renewal case where repair leads to complete restoration of the system. A typical maintenance situation was simulated in the laboratory by subjecting a series of similar test pieces to different loading conditions. Measurements were taken at regular intervals during testing with a number of sensors which provided an indication of the test piece’s condition at the time of measurement. The dataset was split into a training set and a test set and a number of neural network variations were trained using the first set. The networks’ ability to generalize was then tested by presenting the data from the test set to each of these networks. The second dataset contained data collected from a group of pumps working in a coal mining environment. This dataset therefore represented an example of the situation encountered with a repaired system. The performance of different neural network variations was subsequently compared through the use of cross-validation. It was proved that in most cases the use of condition monitoring data as network inputs improved the accuracy of the neural networks’ predictions. The average prediction error of the various neural networks under comparison varied between 431 and 841 seconds on the renewal dataset, where test pieces had a characteristic life of 8971 seconds. When optimized the multi-layer perceptron neural networks trained with the Levenberg-Marquardt algorithm and the general regression neural network produced a sum of squares error within 11.1% of each other for the data of the repaired system. This result emphasizes the importance of adjusting parameters, network architecture and training targets for optimal performance The advantage of using neural networks for predicting residual life was clearly illustrated when comparing their performance to the results achieved through the use of the traditional statistical methods. The potential of using neural networks for residual life prediction was therefore illustrated in both cases.Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2007.Mechanical and Aeronautical EngineeringMEngunrestricte

    Robustness and stability measures for scheduling policies in a single machine environment

    Get PDF
    Cataloged from PDF version of article.Scheduling is a decision making process that concerns allocation of limited resources (machines, material handling equipment, operators, tools, fixtures, etc.) to competing tasks (operations of jobs) over time with the goal of optimizing one or more objectives. The output of this decision process is time/machine/operation assignments. In classical scheduling theory, the objective is generally maximizing some measure of system performance. In addition to classical performance measures two new criteria are used in modern scheduling literature: "robustness" and "stability". In this thesis, we propose several robustness and stability measures and policies. Two new surrogate measures are also developed since the exact measures are difficult to calculate. These surrogate measures are embedded in a tabu search algorithm to generate robust and stable schedules for a single machine subject to random machine breakdowns. We show that our surrogate measures are better than well-known and commonly used average slack method.Gören, SelçukM.S

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set
    • 

    corecore