179,715 research outputs found

    Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

    Get PDF
    Application programming for GPUs (Graphics Processing Units) is complex and error-prone, because the popular approaches — CUDA and OpenCL — are intrinsically low-level and offer no special support for systems consisting of multiple GPUs. The SkelCL library presented in this paper is built on top of the OpenCL standard and offers preimplemented recurring computation and communication patterns (skeletons) which greatly simplify programming for multiGPU systems. The library also provides an abstract vector data type and a high-level data (re)distribution mechanism to shield the programmer from the low-level data transfers between the system’s main memory and multiple GPUs. In this paper, we focus on the specific support in SkelCL for systems with multiple GPUs and use a real-world application study from the area of medical imaging to demonstrate the reduced programming effort and competitive performance of SkelCL as compared to OpenCL and CUDA. Besides, we illustrate how SkelCL adapts to large-scale, distributed heterogeneous systems in order to simplify their programming

    Using the SkelCL Library for High-Level GPU Programming of 2D Applications

    Get PDF
    Application programming for GPUs (Graphics Processing Units) is complex and error-prone, because the popular approaches — CUDA and OpenCL — are intrinsically low-level and offer no special support for systems consisting of multiple GPUs. The SkelCL library offers pre-implemented recurring computation and communication patterns (skeletons) which greatly simplify programming for single- and multi-GPU systems. In this paper, we focus on applications that work on two-dimensional data. We extend SkelCL by the matrix data type and the MapOverlap skeleton which specifies computations that depend on neighboring elements in a matrix. The abstract data types and a high-level data (re)distribution mechanism of SkelCL shield the programmer from the low-level data transfers between the system’s main memory and multiple GPUs. We demonstrate how the extended SkelCL is used to implement real-world image processing applications on two-dimensional data. We show that both from a productivity and a performance point of view it is beneficial to use the high-level abstractions of SkelCL

    SkelCL - A Portable Skeleton Library for High-Level GPU Programming

    Get PDF
    While CUDA and OpenCL made general-purpose programming for Graphics Processing Units (GPU) popular, using these programming approaches remains complex and error-prone because they lack high-level abstractions. The especially challenging systems with multiple GPU are not addressed at all by these low-level programming models. We propose SkelCL – a library providing so-called algorithmic skeletons that capture recurring patterns of parallel computation and communication, together with an abstract vector data type and constructs for specifying data distribution. We demonstrate that SkelCL greatly simplifies programming GPU systems. We report the competitive performance results of SkelCL using both a simple Mandelbrot set computation and an industrial-strength medical imaging application. Because the library is implemented using OpenCL, it is portable across GPU hardware of different vendors

    Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code

    Full text link
    This paper introduces Tiramisu, a polyhedral framework designed to generate high performance code for multiple platforms including multicores, GPUs, and distributed machines. Tiramisu introduces a scheduling language with novel extensions to explicitly manage the complexities that arise when targeting these systems. The framework is designed for the areas of image processing, stencils, linear algebra and deep learning. Tiramisu has two main features: it relies on a flexible representation based on the polyhedral model and it has a rich scheduling language allowing fine-grained control of optimizations. Tiramisu uses a four-level intermediate representation that allows full separation between the algorithms, loop transformations, data layouts, and communication. This separation simplifies targeting multiple hardware architectures with the same algorithm. We evaluate Tiramisu by writing a set of image processing, deep learning, and linear algebra benchmarks and compare them with state-of-the-art compilers and hand-tuned libraries. We show that Tiramisu matches or outperforms existing compilers and libraries on different hardware architectures, including multicore CPUs, GPUs, and distributed machines.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0041

    High-Level Programming for Medical Imaging on Multi-GPU Systems Using the SkelCL Library

    Get PDF
    Application development for modern high-performance systems with Graphics Processing Units (GPUs) relies on low-level programming approaches like CUDA and OpenCL, which leads to complex, lengthy and error-prone programs. In this paper, we present SkelCL – a high-level programming model for systems with multiple GPUs and its implementation as a library on top of OpenCL. SkelCL provides three main enhancements to the OpenCL standard: 1) computations are conveniently expressed using parallel patterns (skeletons); 2) memory management is simplified using parallel container data types; 3) an automatic data (re)distribution mechanism allows for scalability when using multi-GPU systems. We use a real-world example from the field of medical imaging to motivate the design of our programming model and we show how application development using SkelCL is simplified without sacrificing performance: we were able to reduce the code size in our imaging example application by 50% while introducing only a moderate runtime overhead of less than 5%

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog
    • 

    corecore