2,645 research outputs found

    Achieving High Speed CFD simulations: Optimization, Parallelization, and FPGA Acceleration for the unstructured DLR TAU Code

    Get PDF
    Today, large scale parallel simulations are fundamental tools to handle complex problems. The number of processors in current computation platforms has been recently increased and therefore it is necessary to optimize the application performance and to enhance the scalability of massively-parallel systems. In addition, new heterogeneous architectures, combining conventional processors with specific hardware, like FPGAs, to accelerate the most time consuming functions are considered as a strong alternative to boost the performance. In this paper, the performance of the DLR TAU code is analyzed and optimized. The improvement of the code efficiency is addressed through three key activities: Optimization, parallelization and hardware acceleration. At first, a profiling analysis of the most time-consuming processes of the Reynolds Averaged Navier Stokes flow solver on a three-dimensional unstructured mesh is performed. Then, a study of the code scalability with new partitioning algorithms are tested to show the most suitable partitioning algorithms for the selected applications. Finally, a feasibility study on the application of FPGAs and GPUs for the hardware acceleration of CFD simulations is presented

    From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation

    Full text link
    Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization is based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.Comment: 18 pages, 4 figures, accepted for publication in Scientific Programmin

    Large-Eddy Simulations of Flow and Heat Transfer in Complex Three-Dimensional Multilouvered Fins

    Get PDF
    The paper describes the computational procedure and results from large-eddy simulations in a complex three-dimensional louver geometry. The three-dimensionality in the louver geometry occurs along the height of the fin, where the angled louver transitions to the flat landing and joins with the tube surface. The transition region is characterized by a swept leading edge and decreasing flow area between louvers. Preliminary results show a high energy compact vortex jet forming in this region. The jet forms in the vicinity of the louver junction with the flat landing and is drawn under the louver in the transition region. Its interaction with the surface of the louver produces vorticity of the opposite sign, which aids in augmenting heat transfer on the louver surface. The top surface of the louver in the transition region experiences large velocities in the vicinity of the surface and exhibits higher heat transfer coefficients than the bottom surface.Air Conditioning and Refrigeration Project 9

    Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program

    Get PDF
    Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics

    PoisFFT - A Free Parallel Fast Poisson Solver

    Full text link
    A fast Poisson solver software package PoisFFT is presented. It is available as a free software licensed under the GNU GPL license version 3. The package uses the fast Fourier transform to directly solve the Poisson equation on a uniform orthogonal grid. It can solve the pseudo-spectral approximation and the second order finite difference approximation of the continuous solution. The paper reviews the mathematical methods for the fast Poisson solver and discusses the software implementation and parallelization. The use of PoisFFT in an incompressible flow solver is also demonstrated
    corecore