28,018 research outputs found

    Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging

    Full text link
    Many graphics and vision problems can be expressed as non-linear least squares optimizations of objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance on modern GPUs in interactive applications. In this work, we propose a new language, Opt (available under http://optlang.org), for writing these objective functions over image- or graph-structured unknowns concisely and at a high level. Our compiler automatically transforms these specifications into state-of-the-art GPU solvers based on Gauss-Newton or Levenberg-Marquardt methods. Opt can generate different variations of the solver, so users can easily explore tradeoffs in numerical precision, matrix-free methods, and solver approaches. In our results, we implement a variety of real-world graphics and vision applications. Their energy functions are expressible in tens of lines of code, and produce highly-optimized GPU solver implementations. These solver have performance competitive with the best published hand-tuned, application-specific GPU solvers, and orders of magnitude beyond a general-purpose auto-generated solver

    Evaluating the Impact of SDC on the GMRES Iterative Solver

    Full text link
    Increasing parallelism and transistor density, along with increasingly tighter energy and peak power constraints, may force exposure of occasionally incorrect computation or storage to application codes. Silent data corruption (SDC) will likely be infrequent, yet one SDC suffices to make numerical algorithms like iterative linear solvers cease progress towards the correct answer. Thus, we focus on resilience of the iterative linear solver GMRES to a single transient SDC. We derive inexpensive checks to detect the effects of an SDC in GMRES that work for a more general SDC model than presuming a bit flip. Our experiments show that when GMRES is used as the inner solver of an inner-outer iteration, it can "run through" SDC of almost any magnitude in the computationally intensive orthogonalization phase. That is, it gets the right answer using faulty data without any required roll back. Those SDCs which it cannot run through, get caught by our detection scheme

    Adapting the interior point method for the solution of LPs on serial, coarse grain parallel and massively parallel computers

    Get PDF
    In this paper we describe a unified scheme for implementing an interior point algorithm (IPM) over a range of computer architectures. In the inner iteration of the IPM a search direction is computed using Newton's method. Computationally this involves solving a sparse symmetric positive definite (SSPD) system of equations. The choice of direct and indirect methods for the solution of this system, and the design of data structures to take advantage of serial, coarse grain parallel and massively parallel computer architectures, are considered in detail. We put forward arguments as to why integration of the system within a sparse simplex solver is important and outline how the system is designed to achieve this integration

    Inference for Generalized Linear Models via Alternating Directions and Bethe Free Energy Minimization

    Full text link
    Generalized Linear Models (GLMs), where a random vector x\mathbf{x} is observed through a noisy, possibly nonlinear, function of a linear transform z=Ax\mathbf{z}=\mathbf{Ax} arise in a range of applications in nonlinear filtering and regression. Approximate Message Passing (AMP) methods, based on loopy belief propagation, are a promising class of approaches for approximate inference in these models. AMP methods are computationally simple, general, and admit precise analyses with testable conditions for optimality for large i.i.d. transforms A\mathbf{A}. However, the algorithms can easily diverge for general A\mathbf{A}. This paper presents a convergent approach to the generalized AMP (GAMP) algorithm based on direct minimization of a large-system limit approximation of the Bethe Free Energy (LSL-BFE). The proposed method uses a double-loop procedure, where the outer loop successively linearizes the LSL-BFE and the inner loop minimizes the linearized LSL-BFE using the Alternating Direction Method of Multipliers (ADMM). The proposed method, called ADMM-GAMP, is similar in structure to the original GAMP method, but with an additional least-squares minimization. It is shown that for strictly convex, smooth penalties, ADMM-GAMP is guaranteed to converge to a local minima of the LSL-BFE, thus providing a convergent alternative to GAMP that is stable under arbitrary transforms. Simulations are also presented that demonstrate the robustness of the method for non-convex penalties as well
    corecore