3,390 research outputs found

    Panel methods: An introduction

    Get PDF
    Panel methods are numerical schemes for solving (the Prandtl-Glauert equation) for linear, inviscid, irrotational flow about aircraft flying at subsonic or supersonic speeds. The tools at the panel-method user's disposal are (1) surface panels of source-doublet-vorticity distributions that can represent nearly arbitrary geometry, and (2) extremely versatile boundary condition capabilities that can frequently be used for creative modeling. Panel-method capabilities and limitations, basic concepts common to all panel-method codes, different choices that were made in the implementation of these concepts into working computer programs, and various modeling techniques involving boundary conditions, jump properties, and trailing wakes are discussed. An approach for extending the method to nonlinear transonic flow is also presented. Three appendices supplement the main test. In appendix 1, additional detail is provided on how the basic concepts are implemented into a specific computer program (PANAIR). In appendix 2, it is shown how to evaluate analytically the fundamental surface integral that arises in the expressions for influence-coefficients, and evaluate its jump property. In appendix 3, a simple example is used to illustrate the so-called finite part of the improper integrals

    Energy management of three-dimensional minimum-time intercept

    Get PDF
    A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission

    Cumulative reports and publications through December 31, 1988

    Get PDF
    This document contains a complete list of ICASE Reports. Since ICASE Reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    The Penetration of a Finger into a Viscous Fluid in a Channel and Tube

    Get PDF
    The steady-state shape of a finger penetrating into a region filled with a viscous fluid is examined. The two-dimensional and axisymmetric problems are solved using Stokes equations for low Reynolds number flow. To solve the equations, an assumption for the shape of the finger is made and the normal-stress boundary condition is dropped. The remaining equations are solved numerically by covering the domain with a composite mesh composed of a curvilinear grid which follows the curved interface, and a rectilinear grid parallel to the straight boundaries. The shape of the finger is then altered to satisfy the normal-stress boundary condition by using a nonlinear least squares iteration method. The results are compared with the singular perturbation solution of Bretherton (J. Fluid Mech., 10 (1961), pp. 166–188). When the axisymmetric finger moves through a tube, a fraction mm of the viscous fluid is left behind on the walls of the tube. The fraction mm was measured experimentally by Taylor (J. Fluid Mech., 10 (1961), pp. 161–165) as a function of the dimensionless parameter µU/T. The numerical results are compared with the experimental results of Taylor

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    An Arbitrary Curvilinear Coordinate Method for Particle-In-Cell Modeling

    Full text link
    A new approach to the kinetic simulation of plasmas in complex geometries, based on the Particle-in- Cell (PIC) simulation method, is explored. In the two dimensional (2d) electrostatic version of our method, called the Arbitrary Curvilinear Coordinate PIC (ACC-PIC) method, all essential PIC operations are carried out in 2d on a uniform grid on the unit square logical domain, and mapped to a nonuniform boundary-fitted grid on the physical domain. As the resulting logical grid equations of motion are not separable, we have developed an extension of the semi-implicit Modified Leapfrog (ML) integration technique to preserve the symplectic nature of the logical grid particle mover. A generalized, curvilinear coordinate formulation of Poisson's equations to solve for the electrostatic fields on the uniform logical grid is also developed. By our formulation, we compute the plasma charge density on the logical grid based on the particles' positions on the logical domain. That is, the plasma particles are weighted to the uniform logical grid and the self-consistent mean electrostatic fields obtained from the solution of the logical grid Poisson equation are interpolated to the particle positions on the logical grid. This process eliminates the complexity associated with the weighting and interpolation processes on the nonuniform physical grid and allows us to run the PIC method on arbitrary boundary-fitted meshes.Comment: Submitted to Computational Science & Discovery December 201
    • …
    corecore