176 research outputs found

    A Survey of Recent Developments in Testability, Safety and Security of RISC-V Processors

    Get PDF
    With the continued success of the open RISC-V architecture, practical deployment of RISC-V processors necessitates an in-depth consideration of their testability, safety and security aspects. This survey provides an overview of recent developments in this quickly-evolving field. We start with discussing the application of state-of-the-art functional and system-level test solutions to RISC-V processors. Then, we discuss the use of RISC-V processors for safety-related applications; to this end, we outline the essential techniques necessary to obtain safety both in the functional and in the timing domain and review recent processor designs with safety features. Finally, we survey the different aspects of security with respect to RISC-V implementations and discuss the relationship between cryptographic protocols and primitives on the one hand and the RISC-V processor architecture and hardware implementation on the other. We also comment on the role of a RISC-V processor for system security and its resilience against side-channel attacks

    Undergraduate and Graduate Course Descriptions, 2023 Spring

    Get PDF
    Wright State University undergraduate and graduate course descriptions from Spring 2023

    Increased reliability on Intel GPUs via software diverse redundancy

    Get PDF
    In the past decade, Artificial Intelligence has revolutionized various industries, including automotive, avionics, and health sectors. The installation of Advanced Driver Assistance Systems (ADAS) is now a reality, with the goal of achieving fully self-driving cars (SDCs) in the near future. ADAS and Autonomous Driving (AD) systems require processing vast amounts of data at high frequency using complex algorithms (Deep Learning (DL)) to meet tight time constraints (Real Time (RT)). Traditional computing has become a bottleneck, with CPUs unable to handle the data efficiently. High-performance GPUs have partially fulfilled these timing constraints, leading to continuous innovation in device performance and efficiency. For example, Nvidia introduced the Jetson AGX Xavier SoC in 2017, designed for machine learning applications in the automotive sector. However, AD and ADAS challenges also involve safety constraints, such as functional safety. Redundancy is necessary for identifying and correcting erroneous outcomes. To ensure high safety levels, diverse redundancy is used to avoid common cause faults (CCF). High-performance hardware for AD must be verified and validated (V&V) to ensure safety goals, but these processes can be costly. The automotive industry seeks to avoid non-recurring costs by using commercial off-the-shelf products (COTS). However, COTS devices have drawbacks, including limited redundancy and guarded implementation details. Researchers are developing software-only diverse redundancy solutions on top of COTS devices to overcome these limitations. Two main challenges are ensuring redundant computation for error detection and guaranteeing diverse redundancy to detect errors even when they affect all replicas. Current solutions are limited and mostly focused on NVIDIA GPUs. This thesis presents a software-only solution for diverse redundancy on Intel GPUs, providing strong diversity guarantees for the first time. Built on OpenCL, a hardware-agnostic programming language, the technique relies on intrinsics-special functions optimized by integrators. The intrinsics enable identifying hardware threads on the GPU and smart tailoring of workload geometry and allocation to specific computing elements. As a result, redundant threads use physically diverse execution units, meeting diverse redundancy requirements with affordable performance overheads. Several scenarios are developed to measure the impact of modifications to a standard OpenCL kernel execution. First, allocating only half of the available GPU resources; then, overriding the scheduler to use half of the resources; next, duplicating the work to mimic two kernel execution; and finally, executing both kernels in independent parts of the GPU

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    PROCEEDINGS 5th PLATE Conference

    Get PDF
    The 5th international PLATE conference (Product Lifetimes and the Environment) addressed product lifetimes in the context of sustainability. The PLATE conference, which has been running since 2015, has successfully been able to establish a solid network of researchers around its core theme. The topic has come to the forefront of current (political, scientific & societal) debates due to its interconnectedness with a number of recent prominent movements, such as the circular economy, eco-design and collaborative consumption. For the 2023 edition of the conference, we encouraged researchers to propose how to extend, widen or critically re-construct thematic sessions for the PLATE conference, and the paper call was constructed based on these proposals. In this 5th PLATE conference, we had 171 paper presentations and 238 participants from 14 different countries. Beside of paper sessions we organized workshops and REPAIR exhibitions

    Low Earth orbit microsatellite constellation utilizing satellite Hellas Sat 5 as a relay

    Get PDF
    Με δεδομένο ότι βρισκόμαστε σε μια εποχή ορόσημο για την ανάπτυξη στον διαστημικό τομέα, το σύνολο σχεδόν όλων των ανεπτυγμένων χωρών έχει συνειδητοποιήσει ότι η επένδυση στο σύνολο των διαστημικών τεχνολογιών αποτελεί μονόδρομο ανάπτυξης και ευημερίας. Τα δαπανούμενα ποσά είναι απολύτως ενδεικτικά της φρενίτιδας που επικρατεί στη λεγόμενη κούρσα του διαστήματος. Η εισαγωγή πλέον και του ιδιωτικού τομέα στη κούρσα αυτή έχει επιτρέψει την προώθηση του ανταγωνισμού κάτι το οποίο με τη σειρά του έχει ελαττώσει εντυπωσιακά το κόστος χρήσης και αξιοποίησης του διαστημικού τομέα. Αυτό το νέο διαστημικό οικοσύστημα που έχει αναπτυχθεί παγκοσμίως τις τελευταίες δεκαετίες, έχει επιτρέψει τη πρόσβαση στις διαστημικές τεχνολογίες από το σύνολο σχεδόν των χωρών του πλανήτη, τη στιγμή που κατά τις προηγούμενες δεκαετίες, οι μοναδικές χώρες που είχαν τη δυνατότητα να επενδύσουν στον τομέα ήταν οι ΗΠΑ και οι Ρωσία. Δορυφορική παρατήρηση της γης, πλοήγηση, αποτροπή φυσικών καταστροφών, εξερεύνηση του διαστήματος, επιστημονική ανάλυση της επιφάνειας του εδάφους, εκμετάλλευση φυσικών πόρων αλλά και πολιτικές και στρατιωτικές τηλεπικοινωνίες, είναι μόνο μερικές από τις νέες τεχνολογίες που έχει να προσφέρει ο διαστημικός τομέας. Κάθε ένας από αυτούς τους τομείς μπορεί δυνητικά να αποτελέσει πυλώνα ανάπτυξης αν αξιοποιηθεί σωστά και πλέον όλες οι χώρες έχουν συνειδητοποιήσει πως η επένδυση σε κάποιον ή και σε όλους αυτούς τους τομείς μπορούν να επιφέρουν πολλαπλά οφέλη. Ένα χαρακτηριστικό παράδειγμα του νέου διαστημικού οικοσυστήματος που έχει διαμορφωθεί κατά τις τελευταίες δεκαετίες και που δείχνει το πόσο πολύ επενδύουν πλέον οι χώρες στον διαστημικό τομέα, είναι ο υπερδιπλασιαμός των ενεργών δορυφορικών συστημάτων κατά τη πενταετία 2015 – 2020, ιδιαίτερα των τηλεπικοινωνιακών. Αξίζει να σημειωθεί πως τον Δεκέμβριο του 2015, σύμφωνα με τα στοιχεία της UCS, ο αριθμός των ενεργών δορυφόρων του έτους ανήλθε σε 1.381, αριθμός ο οποίος κατά τον ίδιο μήνα του έτους 2020 είχε φτάσει τους 3.372. Έχοντας πει όλα τα παραπάνω, η παρούσα διπλωματική εργασία στοχεύει στην παρουσίαση μιας ολοκληρωμένης ανάλυσης όλων των απαιτούμενων βημάτων που πρέπει να εξετάσει ένας μηχανικός / σχεδιαστής συστημάτων προκειμένου να κατασκευάσει και να αναπτύξει μια πλήρως λειτουργική και αξιόπιστη δορυφορική ζεύξη επικοινωνίας. Η μεθοδολογία περιλαμβάνει μια πλήρη περιγραφή των βασικών νόμων του διαστημικού περιβάλλοντος καθώς και μια εκτενή ανάλυση της τροχιακής μηχανικής και των παραμέτρων. Η ιδέα ήταν να παρουσιαστεί πώς η θεωρία μπορεί να εφαρμοστεί σε μια πραγματική δορυφορική προσομοίωση καθώς και πώς επηρεάζεται από αυτήν. Το τελευταίο βήμα ήταν ο σχεδιασμός και η κατασκευή ενός πραγματικού συστήματος δορυφορικής επικοινωνίας σε ένα εξειδικευμένο λογισμικό και η παρουσίαση των αποτελεσμάτων. Το κύριο συμπέρασμα της παραπάνω υλοποίησης είναι το γεγονός ότι μέσω της χρήσης ενός αστερισμού δορυφόρων χαμηλής Γήινης τροχιάς σε συνδυασμό με έναν γεωστατικό δορυφόρο που χρησιμοποιείται αναμεταδότης, είναι δυνατό να επιτευχθεί μια ανθεκτική και αξιόπιστη επικοινωνιακή ζεύξη με εξαιρετικά υψηλούς ρυθμούς μετάδοσης δεδομένων και σχεδόν παγκόσμια κάλυψη.Given that we are in a landmark era of the space sector development , most countries have realized that an investment in space technologies is the only way for development and prosperity. The invested budgets are absolutely indicative of the so-called space race. The introduction of the private sector in this race has allowed the promotion of competition, which in turn has dramatically reduced the cost of using and exploiting the space sector. This new space ecosystem that has been developed worldwide in recent decades, has allowed access to space technologies from almost all countries on the planet, while in previous decades, the only countries that had the opportunity to invest in the sector were USA and Russia. Satellite earth observation, navigation, prevention of natural disasters, space exploration, scientific analysis of the earth's surface, exploitation of natural resources, but also civil and military telecommunications, are just some of the new technologies that the space sector has to offer. Each of these sectors can potentially be a pillar of development if exploited properly and almost all of the modern countries have realized that investing in one or all of these sectors can offer multiple benefits. A typical example of the new space ecosystem that has been formed during the last decades and that shows how much money countries are now investing in the space sector, is the dramatic increase of the active satellite systems during the years 2015 – 2020, especially the telecommunication ones. It is worth mentioning that in December 2015, according to UCS data, the number of active satellites was 1.381, a number which during the same month in 2020 reached the astonishing number of 3.372. The rapid development of the space sector combined with the cost reducing methods that private sectors have introduced, is showing that the imminent future seems to be very promising. Having said all of the above, this thesis aims at presenting a comprehensive analysis of all the required steps that a system engineer / designer must consider in order to build and deploy a fully functional and reliable satellite communication link. The methodology entails a fully description of the basic laws of the space environment as well as an extensive analysis of the orbital mechanics and parameters. The idea was to demonstrate how the theory can be utilized in an actual satellite project simulation as well as how it is affected by it. The last step was to design and build an actual satellite communication system on a specialized software and present the results. The main conclusion of the above implementation is the fact that through the use of a low Earth orbit satellite constellation combined with a geostationary satellite used as a relay, it’s possible to achieve a resilient and reliable communication link with exceptional high data rates and an almost worldwide coverage

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Z-Numbers-Based Approach to Hotel Service Quality Assessment

    Get PDF
    In this study, we are analyzing the possibility of using Z-numbers for measuring the service quality and decision-making for quality improvement in the hotel industry. Techniques used for these purposes are based on consumer evalu- ations - expectations and perceptions. As a rule, these evaluations are expressed in crisp numbers (Likert scale) or fuzzy estimates. However, descriptions of the respondent opinions based on crisp or fuzzy numbers formalism not in all cases are relevant. The existing methods do not take into account the degree of con- fidence of respondents in their assessments. A fuzzy approach better describes the uncertainties associated with human perceptions and expectations. Linguis- tic values are more acceptable than crisp numbers. To consider the subjective natures of both service quality estimates and confidence degree in them, the two- component Z-numbers Z = (A, B) were used. Z-numbers express more adequately the opinion of consumers. The proposed and computationally efficient approach (Z-SERVQUAL, Z-IPA) allows to determine the quality of services and iden- tify the factors that required improvement and the areas for further development. The suggested method was applied to evaluate the service quality in small and medium-sized hotels in Turkey and Azerbaijan, illustrated by the example

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems
    corecore