137 research outputs found

    Towards a generic scan analysis framework

    Get PDF

    Monte Carlo validation of a mu-SPECT imaging system on the lightweight grid CiGri

    Get PDF
    à paraître dans Future Generation Computer SystemsMonte Carlo Simulations (MCS) are nowadays widely used in the field of nuclear medicine for system and algorithms designs. They are valuable for accurately reproducing experimental data, but at the expense of a long computing time. An efficient solution for shorter elapsed time has recently been proposed: grid computing. The aim of this work is to validate a small animal gamma camera MCS and to confirm the usefulness of grid computing for such a study. Good matches between measured and simulated data were achieved and a crunching factor up to 70 was attained on a lightweight campus grid

    Optimizing Multi-GPU Parallelization Strategies for Deep Learning Training

    Full text link
    Deploying deep learning (DL) models across multiple compute devices to train large and complex models continues to grow in importance because of the demand for faster and more frequent training. Data parallelism (DP) is the most widely used parallelization strategy, but as the number of devices in data parallel training grows, so does the communication overhead between devices. Additionally, a larger aggregate batch size per step leads to statistical efficiency loss, i.e., a larger number of epochs are required to converge to a desired accuracy. These factors affect overall training time and beyond a certain number of devices, the speedup from leveraging DP begins to scale poorly. In addition to DP, each training step can be accelerated by exploiting model parallelism (MP). This work explores hybrid parallelization, where each data parallel worker is comprised of more than one device, across which the model dataflow graph (DFG) is split using MP. We show that at scale, hybrid training will be more effective at minimizing end-to-end training time than exploiting DP alone. We project that for Inception-V3, GNMT, and BigLSTM, the hybrid strategy provides an end-to-end training speedup of at least 26.5%, 8%, and 22% respectively compared to what DP alone can achieve at scale

    Deep Learning at Scale with Nearest Neighbours Communications

    Get PDF
    As deep learning techniques become more and more popular, there is the need to move these applications from the data scientist’s Jupyter notebook to efficient and reliable enterprise solutions. Moreover, distributed training of deep learning models will happen more and more outside the well-known borders of cloud and HPC infrastructure and will move to edge and mobile platforms. Current techniques for distributed deep learning have drawbacks in both these scenarios, limiting their long-term applicability. After a critical review of the established techniques for Data Parallel training from both a distributed computing and deep learning perspective, a novel approach based on nearest-neighbour communications is presented in order to overcome some of the issues related to mainstream approaches, such as global communication patterns. Moreover, in order to validate the proposed strategy, the Flexible Asynchronous Scalable Training (FAST) framework is introduced, which allows to apply the nearest-neighbours communications approach to a deep learning framework of choice. Finally, a relevant use-case is deployed on a medium-scale infrastructure to demonstrate both the framework and the methodology presented. Training convergence and scalability results are presented and discussed in comparison to a baseline defined by using state-of-the-art distributed training tools provided by a well-known deep learning framework

    Efficient I/O for Computational Grid Applications

    Get PDF
    High-performance computing increasingly occurs on computational grids composed of heterogeneous and geographically distributed systems of computers, networks, and storage devices that collectively act as a single virtual computer. A key challenge in this environment is to provide efficient access to data distributed across remote data servers. This dissertation explores some of the issues associated with I/O for wide-area distributed computing and describes an I/O system, called Armada, with the following features: a framework to allow application and dataset providers to flexibly compose graphs of processing modules that describe the distribution, application interfaces, and processing required of the dataset before or after computation; an algorithm to restructure application graphs to increase parallelism and to improve network performance in a wide-area network; and a hierarchical graph-partitioning scheme that deploys components of the application graph in a way that is both beneficial to the application and sensitive to the administrative policies of the different administrative domains. Experiments show that applications using Armada perform well in both low- and high-bandwidth environments, and that our approach does an exceptional job of hiding the network latency inherent in grid computing

    Scalable computing for earth observation - Application on Sea Ice analysis

    Get PDF
    In recent years, Deep learning (DL) networks have shown considerable improvements and have become a preferred methodology in many different applications. These networks have outperformed other classical techniques, particularly in large data settings. In earth observation from the satellite field, for example, DL algorithms have demonstrated the ability to learn complicated nonlinear relationships in input data accurately. Thus, it contributed to advancement in this field. However, the training process of these networks has heavy computational overheads. The reason is two-fold: The sizable complexity of these networks and the high number of training samples needed to learn all parameters comprising these architectures. Although the quantity of training data enhances the accuracy of the trained models in general, the computational cost may restrict the amount of analysis that can be done. This issue is particularly critical in satellite remote sensing, where a myriad of satellites generate an enormous amount of data daily, and acquiring in-situ ground truth for building a large training dataset is a fundamental prerequisite. This dissertation considers various aspects of deep learning based sea ice monitoring from SAR data. In this application, labeling data is very costly and time-consuming. Also, in some cases, it is not even achievable due to challenges in establishing the required domain knowledge, specifically when it comes to monitoring Arctic Sea ice with Synthetic Aperture Radar (SAR), which is the application domain of this thesis. Because the Arctic is remote, has long dark seasons, and has a very dynamic weather system, the collection of reliable in-situ data is very demanding. In addition to the challenges of interpreting SAR data of sea ice, this issue makes SAR-based sea ice analysis with DL networks a complicated process. We propose novel DL methods to cope with the problems of scarce training data and address the computational cost of the training process. We analyze DL network capabilities based on self-designed architectures and learn strategies, such as transfer learning for sea ice classification. We also address the scarcity of training data by proposing a novel deep semi-supervised learning method based on SAR data for incorporating unlabeled data information into the training process. Finally, a new distributed DL method that can be used in a semi-supervised manner is proposed to address the computational complexity of deep neural network training

    Distributed Simulations for 3D Ultrasound Computer Tomography

    Get PDF
    More than 10% of all women in the western world get breast cancer. The Ultrasound Computer Tomography (USCT) project aims to provide a screening method which can detect cancer tumours at 5mm

    Checkpoint-based forward recovery using lookahead execution and rollback validation in parallel and distributed systems

    Get PDF
    This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR
    • …
    corecore