232 research outputs found

    Physically Based Preconditioning Techniques Applied to the First Order Particle Transport and to Fluid Transport in Porous Media

    Get PDF
    Physically based preconditioning is applied to linear systems resulting from solving the first order formulation of the particle transport equation and from solving the homogenized form of the simple flow equation for porous media flows. The first order formulation of the particle transport equation is solved two ways. The first uses a least squares finite element method resulting in a symmetric positive definite linear system which is solved by a preconditioned conjugate gradient method. The second uses a discontinuous finite element method resulting in a non-symmetric linear system which is solved by a preconditioned biconjugate gradient stabilized method. The flow equation is solved using a mixed finite element method. Specifically four levels of improvement are applied: homogenization of the porous media domain, a projection method for the mixed finite element method which simplifies the linear system, physically based preconditioning, and implementation of the linear solver in parallel on graphic processing units. The conjugate gradient linear solver for the least squares finite element method is also applied in parallel on graphics processing units. The physically based preconditioner is shown to perform well in each case, in relation to speed-ups gained and as compared with several algebraic preconditioners

    Using GPU to Accelerate Linear Computations in Power System Applications

    Get PDF
    With the development of advanced power system controls, the industrial and research community is becoming more interested in simulating larger interconnected power grids. It is always critical to incorporate advanced computing technologies to accelerate these power system computations. Power flow, one of the most fundamental computations in power system analysis, converts the solution of non-linear systems to that of a set of linear systems via the Newton method or one of its variants. An efficient solution to these linear equations is the key to improving the performance of power flow computation, and hence to accelerating other power system applications based on power flow computation, such as optimal power flow, contingency analysis, etc. This dissertation focuses on the exploration of iterative linear solvers and applicable preconditioners, with graphic processing unit (GPU) implementations to achieve performance improvement on the linear computations in power flow computations. An iterative conjugate gradient solver with Chebyshev preconditioner is studied first, and then the preconditioner is extended to a two-step preconditioner. At last, the conjugate gradient solver and the two-step preconditioner are integrated with MATPOWER to solve the practical fast decoupled load flow (FDPF), and an inexact linear solution method is proposed to further save the runtime of FDPF. Performance improvement is reported by applying these methods and GPU-implementation. The final complete GPU-based FDPF with inexact linear solving can achieve nearly 3x performance improvement over the MATPOWER implementation for a test system with 11,624 buses. A supporting study including a quick estimation of the largest eigenvalue of the linear system which is required by the Chebyshev preconditioner is presented as well. This dissertation demonstrates the potential of using GPU with scalable methods in power flow computation

    KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners

    Full text link
    [EN] Contemporary applications in computational science and engineering often require the solution of linear systems which may be of different sizes, shapes, and structures. The goal of this paper is to explain how two libraries, PETSc and HPDDM, have been interfaced in order to offer end-users robust overlapping Schwarz preconditioners and advanced Krylov methods featuring recycling and the ability to deal with multiple right-hand sides. The flexibility of the implementation is showcased and explained with minimalist, easy-to-run, and reproducible examples, to ease the integration of these algorithms into more advanced frameworks. The examples provided cover applications from eigenanalysis, elasticity, combustion, and electromagnetism.Jose E. Roman was supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-DA (PID2019-107379RB-I00)Jolivet, P.; Roman, JE.; Zampini, S. (2021). KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners. Computers & Mathematics with Applications. 84:277-295. https://doi.org/10.1016/j.camwa.2021.01.0032772958

    LDRD final report on massively-parallel linear programming : the parPCx system.

    Full text link

    Preconditioning for Sparse Linear Systems at the Dawn of the 21st Century: History, Current Developments, and Future Perspectives

    Get PDF
    Iterative methods are currently the solvers of choice for large sparse linear systems of equations. However, it is well known that the key factor for accelerating, or even allowing for, convergence is the preconditioner. The research on preconditioning techniques has characterized the last two decades. Nowadays, there are a number of different options to be considered when choosing the most appropriate preconditioner for the specific problem at hand. The present work provides an overview of the most popular algorithms available today, emphasizing the respective merits and limitations. The overview is restricted to algebraic preconditioners, that is, general-purpose algorithms requiring the knowledge of the system matrix only, independently of the specific problem it arises from. Along with the traditional distinction between incomplete factorizations and approximate inverses, the most recent developments are considered, including the scalable multigrid and parallel approaches which represent the current frontier of research. A separate section devoted to saddle-point problems, which arise in many different applications, closes the paper
    corecore