110 research outputs found

    Unit Tangent Vector Computation for Homotopy Curve Tracking on aHypercube

    Get PDF
    Probability-one homotopy methods are a class of methods for solving nonlinear systems of equations that are globally convergent from an arbitrary starting point. The essence of all such algorithms is the construction of an appropriate homotopy map and subsequent tracking of some smooth curve in the zero set of the homotopy map. Tracking a homotopy curve involves finding the unit tangent vectors at different points along the zero curve. Because of the way a homotopy map is constructed, the unit tangent vector at each point in the zero curve of a homotopy map (symbols) is in the kernel of the Jacobian matrix (symbols). Hence tracking the zero curve of a homotopy map involves finding the kernel of the Jacobian matrix (symbols). The Jacobian matrix (symbols) is a n x (n + 1) matrix with full rank. Since the accuracy of the unit tangent vector is very important, on orthogonal factorization instead of an LU factorization of the Jacobian matrix is computed. Two related factorizations, namely QR and LQ factorization, are considered here. This paper presents computational results showing the performance of several different parallel orthogonal factorization/triangular system solving algorithms on a hypercube. Since the purpose of this study is to find ways to parallelize homotopy algorithms, it is assumed that the matrices are small, dense, and have a special structure such as that of the Jacobian matrix of a homotopy map

    Analysis of Function Component Complexity for Hypercube Homotopy Algorithms

    Get PDF
    Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of equations that globally convergent from an arbitrary starting point with probability one. The essence of these homotopy algorithms is the construction of a homotopy map p-sub a and the subsequent tracking of a smooth curve y in the zero set p-sub a to the -1 (0) of p-sub a. Tracking the zero curve y requires repeated evaluation of the map p-sub a, its n x (v + 1) Jacobian matrix Dp-sub a and numerical linear algebra for calculating the kernel of Dp-sub a. This paper analyzes parallel homotopy algorithms on a hypercube, considering the numerical algebra, several communications topologies and problem decomposition strategies, functions component complexity, problem size, and the effect of different component complexity distributions. These parameters interact in complicated ways, but some general principles can be inferred based on empirical results

    POLSYS GLP: A Parallel General Linear Product Homotopy Code for Solving Polynomial Systems of Equations

    Get PDF
    Globally convergent, probability-one homotopy methods have proven to be very effective for finding all the isolated solutions to polynomial systems of equations. After many years of development, homotopy path trackers based on probability-one homotopy methods are reliable and fast. Now, theoretical advances reducing the number of homotopy paths that must be tracked, and in the handling of singular solutions, have made probability-one homotopy methods even more practical. POLSYS GLP consists of Fortran 95 modules for nding all isolated solutions of a complex coefficient polynomial system of equations. The package is intended to be used on a distributed memory multiprocessor in conjunction with HOMPACK90 (Algorithm 777), and makes extensive use of Fortran 95 derived data types and MPI to support a general linear product (GLP) polynomial system structure. GLP structure is intermediate between the partitioned linear product structure used by POLSYS PLP (Algorithm 801) and the BKK-based structure used by PHCPACK. The code requires a GLP structure as input, and although nding the optimal GLP structure is a dicult combinatorial problem, generally physical or engineering intuition about a problem yields a very good GLP structure. POLSYS GLP employs a sophisticated power series end game for handling singular solutions, and provides support for problem denition both at a high level and via hand-crafted code. Dierent GLP structures and their corresponding Bezout numbers can be systematically explored before committing to root finding

    Message length effects for solving polynomial systems on a hypercube

    Full text link
    Polynomial systems of equations frequently arise in solid modelling, robotics, computer vision, chemistry, chemical engineering, and mechanical engineering. Locally convergent iterative methods such as quasi-Newton methods may diverge or fail to find all meaningful solutions of a polynomial system. Recently a homotopy algorithm has been proposed for polynomial systems that is guaranteed globally convergent (always converges from an arbitrary starting point) with probability one, finds all solutions to the polynomial system, and has a large amount of inherent parallelism. For this homotopy algorithm and a given decomposition strategy, the communication overhead for several possible communication stritegies is explored empirically in this paper. The experiments were conducted on an iPSC-32 hypercube.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27982/1/0000415.pd

    Generalized Linear Product Homotopy Algorithms and the Computation of Reachable Surfaces

    Get PDF
    In this paper, we apply a homotopy algorithm to the problem of finding points in a moving body that lie on specific algebraic surfaces for a given set of spatial configurations of the body. This problem is a generalization of Burmester's determination of points in a body that lie on a circle for five planar positions. We focus on seven surfaces that we term "reachable" because they correspond to serial chains with two degree-of-freedom positioning structures combined with a three degree-of-freedom spherical wrist. A homotopy algorithm based on generalized linear products is used to provide a convenient estimate of the number of solutions of these polynomial systems. A parallelized version of this algorithm was then used to numerically determine all of the solutions

    Integrable theories and loop spaces: fundamentals, applications and new developments

    Get PDF
    We review our proposal to generalize the standard two-dimensional flatness construction of Lax-Zakharov-Shabat to relativistic field theories in d+1 dimensions. The fundamentals from the theory of connections on loop spaces are presented and clarified. These ideas are exposed using mathematical tools familiar to physicists. We exhibit recent and new results that relate the locality of the loop space curvature to the diffeomorphism invariance of the loop space holonomy. These result are used to show that the holonomy is abelian if the holonomy is diffeomorphism invariant. These results justify in part and set the limitations of the local implementations of the approach which has been worked out in the last decade. We highlight very interesting applications like the construction and the solution of an integrable four dimensional field theory with Hopf solitons, and new integrability conditions which generalize BPS equations to systems such as Skyrme theories. Applications of these ideas leading to new constructions are implemented in theories that admit volume preserving diffeomorphisms of the target space as symmetries. Applications to physically relevant systems like Yang Mills theories are summarized. We also discuss other possibilities that have not yet been explored.Comment: 64 pages, 8 figure
    corecore