416 research outputs found

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Physical pixels

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2000.Includes bibliographical references (leaves 48-51).The picture element, or pixel, is a conceptual unit of representation for digital information. Like all data structures of the computer, pixels are invisible and therefore require an output device to be seen. The physical unit of display, or physical pixel, can be any form that makes the pixel visible. Pixels are often represented as the electronically addressable phosphors of a video monitor, but the potential for different visualizations inspires the development of novel phenotypes. Four new systems of physical pixels are presented: Nami, Peano, the Digital Palette and 20/20 Refurbished. In each case, the combination of material, hardware and software design results in a unique visualization of computation. The chief contribution of this research is the articulation of a mode of artistic practice in which custom units of representation integrate physical and digital media to engender a new art.by Kelly Bowman Heaton.S.M

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Design of Interactive Service Robots applying methods of Systems Engineering and Decision Making

    Get PDF
    Interaktive Service Roboter werden heute bereits in einigen Anwendungsszenarien eingesetzt, in denen sie beispielsweise Menschen durch GebĂ€ude geleiten oder bei hĂ€uslichen Aufgaben unterstĂŒtzen. Dennoch gibt es bislang kein System, das den erwarteten Marktdurchbruch geschafft hat. Die hohe KomplexitĂ€t solcher Systeme und vielfĂ€ltige Anforderungen durch Benutzer und Betreiber erschweren die Entwicklung von erfolgreichen Service Robotern. In dieser Arbeit wurden zwei interaktive Service Roboter entwickelt, die das Potential haben, die beschriebenen HinderungsgrĂŒnde fĂŒr einen breiten Einsatz zu ĂŒberwinden. Das erste Robotersystem wurde als Shopping Roboter fĂŒr BaumĂ€rkte entwickelt, in denen es Kunden zu gesuchten Produkten fĂŒhrt. Das zweite System dient als interaktiver Pflegeroboter Ă€lteren Menschen in hĂ€uslicher Umgebung bei der BewĂ€ltigung tĂ€glicher Aufgaben. Diese Arbeit beschreibt die Realisierung der Embedded Systems beider Robotersysteme und umfasst insbesondere die Entwicklung der Low-Level System Architekturen, Energie Management Systeme, Kommunikationssysteme, Sensorsysteme, sowie ausgewĂ€hlte Aspekte der mechanischen Umsetzung. Die Entwicklung einer Vielzahl von Steuerungsmodulen, notwendig fĂŒr die Realisierung interaktiver Service Roboter, wird beschrieben. Die vorliegende Arbeit verwendet und erweitert Methoden des Systems Engineerings, um die hohe SystemkomplexitĂ€t von interaktiven Service Robotern sowie die vielfĂ€ltigen Anforderungen an deren spĂ€teren Einsatz beherrschen zu können. Der Entwicklungsprozess der beiden Roboter basiert auf dem V-Model, welches einen strukturierten Entwurfsablauf unter BerĂŒcksichtigung aller Systemanforderungen erlaubt. Es zwingt ferner zur frĂŒhzeitigen Spezifikation von PrĂŒfablĂ€ufen, was die QualitĂ€t und ZuverlĂ€ssigkeit der Entwicklungsergebnisse verbessert. FĂŒr die UnterstĂŒtzung von Entscheidungen im Entwicklungsprozess schlĂ€gt diese Arbeit eine Kombination aus dem V-Model und dem Analytic Hierarchy Process (AHP) vor. Der AHP hilft bei der Auswahl verfĂŒgbarer technischer Alternativen unter BerĂŒcksichtigung von PrioritĂ€ten im Entwicklungsprozess. Diese Arbeit spezifiziert sieben Kriterien, die Service Roboter charakterisieren: Anpassbarkeit, Laufzeit, Benutzbarkeit, Robustheit, Sicherheit, Features und Kosten. Die PrioritĂ€ten dieser Kriterien im Entwicklungsprozess werden fĂŒr jeden Roboter individuell bestimmt. Der AHP ermittelt die beste Lösung basierend auf diesen gewichteten Kriterien und den bewerteten technischen Alternativen. Die Einbindung des AHP in den V-Model Prozess wurde am Entwurf des Shopping Roboter entwickelt und geprĂŒft. Die AllgemeingĂŒltigkeit dieser Methode wurde wĂ€hrend der Entwicklung des Pflegeroboters verifiziert.Interactive service robots have already been developed and operate as example installations taking over guidance tasks or serving as home assistants. However, none of these systems have become an off-the-shelf product or have achieved the predicted breakthrough so far. The challenges of the design of such systems are, on the one hand, the combination of cutting edge technologies to a complex product; on the other hand, the consideration of requirements important for the later marketing during the design process. In the framework of this dissertation, two interactive service robot systems are developed that have the potential to overcome current market entry barriers. These robots are designed to operate in two different environments: one robot guides walked-in users in large home improvement stores to requested product locations and interacts with the customer to provide product information; the other robot assists elderly people to stay longer in their homes and takes over home-care tasks. This work describes the realization of the embedded systems of both robots. In particular, the design of low-level system architectures, energy management systems, communication systems, sensor systems, and selected aspects of mechanical implementations are carried out in this work. Multiple embedded system modules are developed for the control of the robots' functionalities; the development processes as well as the composition and evaluation of these modules are presented in this work. To cope with the complexity and the various factors that are important for the design of the robots, this thesis applies and further develops system engineering methods. The development process is based on the V-Model system design method. The V-Model helps to structure the design process under consideration of all system requirements. It involves evaluation procedures at all design levels, and thus increases the quality and reliability of the development outputs. To support design decisions, this thesis proposes to combine the V-Model with the Analytic Hierarchy Process (AHP) method. The AHP helps to evaluate technical alternatives for design decisions according to overall criteria, a system has to fulfill. This thesis defines seven criteria that characterize a service robot: Adaptability, Operation Time, Usability, Robustness, Safeness, Features, and Costs. These criteria are weighted for each individual robot application. The AHP evaluates technical design alternatives based on the weighted criteria to reveal the best technical solution. The integration of the AHP into the V-Model development is tested and improved during the design process of the shopping robot system. The generality of this combined systematic design approach is validated during the design of the home-care robot system

    Automated Discovery of Self-Replicating Structures in Cellular Space Automata Models

    Get PDF
    This thesis demonstrates for the first time that it is possible to automatically discover self-replicating structures in cellular space automata models rather than, as has been done in the past, to design them manually. Self-replication is defined as the process an entity undergoes in constructing a copy of itself. Von~Neumann was the first to investigate artificial self-replicating structures and did so in the context of cellular automata, a cellular space model consisting of numerous finite-state machines embedded in a regular tessellation. Interest in artificial self-replicating systems has increased in recent years due to potential applications in molecular-scale manufacturing, programming parallel computing systems, and digital hardware design, and also as part of the field of artificial life

    Technology Directions for the 21st Century

    Get PDF
    The Office of Space Communications (OSC) is tasked by NASA to conduct a planning process to meet NASA's science mission and other communications and data processing requirements. A set of technology trend studies was undertaken by Science Applications International Corporation (SAIC) for OSC to identify quantitative data that can be used to predict performance of electronic equipment in the future to assist in the planning process. Only commercially available, off-the-shelf technology was included. For each technology area considered, the current state of the technology is discussed, future applications that could benefit from use of the technology are identified, and likely future developments of the technology are described. The impact of each technology area on NASA operations is presented together with a discussion of the feasibility and risk associated with its development. An approximate timeline is given for the next 15 to 25 years to indicate the anticipated evolution of capabilities within each of the technology areas considered. This volume contains four chapters: one each on technology trends for database systems, computer software, neural and fuzzy systems, and artificial intelligence. The principal study results are summarized at the beginning of each chapter

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Simulating Humans: Computer Graphics, Animation, and Control

    Get PDF
    People are all around us. They inhabit our home, workplace, entertainment, and environment. Their presence and actions are noted or ignored, enjoyed or disdained, analyzed or prescribed. The very ubiquitousness of other people in our lives poses a tantalizing challenge to the computational modeler: people are at once the most common object of interest and yet the most structurally complex. Their everyday movements are amazingly uid yet demanding to reproduce, with actions driven not just mechanically by muscles and bones but also cognitively by beliefs and intentions. Our motor systems manage to learn how to make us move without leaving us the burden or pleasure of knowing how we did it. Likewise we learn how to describe the actions and behaviors of others without consciously struggling with the processes of perception, recognition, and language

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research
    • 

    corecore