8,003 research outputs found

    The Fibers and Range of Reduction Graphs in Ciliates

    Full text link
    The biological process of gene assembly has been modeled based on three types of string rewriting rules, called string pointer rules, defined on so-called legal strings. It has been shown that reduction graphs, graphs that are based on the notion of breakpoint graph in the theory of sorting by reversal, for legal strings provide valuable insights into the gene assembly process. We characterize which legal strings obtain the same reduction graph (up to isomorphism), and moreover we characterize which graphs are (isomorphic to) reduction graphs.Comment: 24 pages, 13 figure

    On Constructor Rewrite Systems and the Lambda Calculus

    Full text link
    We prove that orthogonal constructor term rewrite systems and lambda-calculus with weak (i.e., no reduction is allowed under the scope of a lambda-abstraction) call-by-value reduction can simulate each other with a linear overhead. In particular, weak call-by- value beta-reduction can be simulated by an orthogonal constructor term rewrite system in the same number of reduction steps. Conversely, each reduction in a term rewrite system can be simulated by a constant number of beta-reduction steps. This is relevant to implicit computational complexity, because the number of beta steps to normal form is polynomially related to the actual cost (that is, as performed on a Turing machine) of normalization, under weak call-by-value reduction. Orthogonal constructor term rewrite systems and lambda-calculus are thus both polynomially related to Turing machines, taking as notion of cost their natural parameters.Comment: 27 pages. arXiv admin note: substantial text overlap with arXiv:0904.412

    Functional Dependencies Unleashed for Scalable Data Exchange

    Full text link
    We address the problem of efficiently evaluating target functional dependencies (fds) in the Data Exchange (DE) process. Target fds naturally occur in many DE scenarios, including the ones in Life Sciences in which multiple source relations need to be structured under a constrained target schema. However, despite their wide use, target fds' evaluation is still a bottleneck in the state-of-the-art DE engines. Systems relying on an all-SQL approach typically do not support target fds unless additional information is provided. Alternatively, DE engines that do include these dependencies typically pay the price of a significant drop in performance and scalability. In this paper, we present a novel chase-based algorithm that can efficiently handle arbitrary fds on the target. Our approach essentially relies on exploiting the interactions between source-to-target (s-t) tuple-generating dependencies (tgds) and target fds. This allows us to tame the size of the intermediate chase results, by playing on a careful ordering of chase steps interleaving fds and (chosen) tgds. As a direct consequence, we importantly diminish the fd application scope, often a central cause of the dramatic overhead induced by target fds. Moreover, reasoning on dependency interaction further leads us to interesting parallelization opportunities, yielding additional scalability gains. We provide a proof-of-concept implementation of our chase-based algorithm and an experimental study aiming at gauging its scalability with respect to a number of parameters, among which the size of source instances and the number of dependencies of each tested scenario. Finally, we empirically compare with the latest DE engines, and show that our algorithm outperforms them

    !-Graphs with Trivial Overlap are Context-Free

    Full text link
    String diagrams are a powerful tool for reasoning about composite structures in symmetric monoidal categories. By representing string diagrams as graphs, equational reasoning can be done automatically by double-pushout rewriting. !-graphs give us the means of expressing and proving properties about whole families of these graphs simultaneously. While !-graphs provide elegant proofs of surprisingly powerful theorems, little is known about the formal properties of the graph languages they define. This paper takes the first step in characterising these languages by showing that an important subclass of !-graphs--those whose repeated structures only overlap trivially--can be encoded using a (context-free) vertex replacement grammar.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Dimensional Confluence Algebra of Information Space Modulo Quotient Abstraction Relations in Automated Problem Solving Paradigm

    Full text link
    Confluence in abstract parallel category systems is established for net class-rewriting in iterative closed multilevel quotient graph structures with uncountable node arities by multi-dimensional transducer operations in topological metrics defined by alphabetically abstracting net block homomorphism. We obtain minimum prerequisites for the comprehensive connector pairs in a multitude dimensional rewriting closure generating confluence in Participatory algebra for different horizontal and vertical level projections modulo abstraction relations constituting formal semantics for confluence in information space. Participatory algebra with formal automata syntax in its entirety representing automated problem solving paradigm generates rich variety of multitude confluence harmonizers under each fundamental abstraction relation set, horizontal structure mapping and vertical process iteration cardinality.Comment: The current work is an application as a continuation for my previous works in arXiv:1305.5637 and arXiv:1308.5321 using the key definitions of them sustaining consistency, consequently references being minimized. Readers are strongly advised to resort to the mentioned previous works for preliminaries. arXiv admin note: text overlap with arXiv:1408.137
    • …
    corecore