216,247 research outputs found

    Termhood-based Comparability Metrics of Comparable Corpus in Special Domain

    Full text link
    Cross-Language Information Retrieval (CLIR) and machine translation (MT) resources, such as dictionaries and parallel corpora, are scarce and hard to come by for special domains. Besides, these resources are just limited to a few languages, such as English, French, and Spanish and so on. So, obtaining comparable corpora automatically for such domains could be an answer to this problem effectively. Comparable corpora, that the subcorpora are not translations of each other, can be easily obtained from web. Therefore, building and using comparable corpora is often a more feasible option in multilingual information processing. Comparability metrics is one of key issues in the field of building and using comparable corpus. Currently, there is no widely accepted definition or metrics method of corpus comparability. In fact, Different definitions or metrics methods of comparability might be given to suit various tasks about natural language processing. A new comparability, namely, termhood-based metrics, oriented to the task of bilingual terminology extraction, is proposed in this paper. In this method, words are ranked by termhood not frequency, and then the cosine similarities, calculated based on the ranking lists of word termhood, is used as comparability. Experiments results show that termhood-based metrics performs better than traditional frequency-based metrics

    HPC compact quasi-Newton algorithm for interface problems

    Full text link
    In this work we present a robust interface coupling algorithm called Compact Interface quasi-Newton (CIQN). It is designed for computationally intensive applications using an MPI multi-code partitioned scheme. The algorithm allows to reuse information from previous time steps, feature that has been previously proposed to accelerate convergence. Through algebraic manipulation, an efficient usage of the computational resources is achieved by: avoiding construction of dense matrices and reduce every multiplication to a matrix-vector product and reusing the computationally expensive loops. This leads to a compact version of the original quasi-Newton algorithm. Altogether with an efficient communication, in this paper we show an efficient scalability up to 4800 cores. Three examples with qualitatively different dynamics are shown to prove that the algorithm can efficiently deal with added mass instability and two-field coupled problems. We also show how reusing histories and filtering does not necessarily makes a more robust scheme and, finally, we prove the necessity of this HPC version of the algorithm. The novelty of this article lies in the HPC focused implementation of the algorithm, detailing how to fuse and combine the composing blocks to obtain an scalable MPI implementation. Such an implementation is mandatory in large scale cases, for which the contact surface cannot be stored in a single computational node, or the number of contact nodes is not negligible compared with the size of the domain. \c{opyright} Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Comment: 33 pages: 23 manuscript, 10 appendix. 16 figures: 4 manuscript, 12 appendix. 10 Tables: 3 manuscript, 7 appendi

    Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Data Access

    Full text link
    Pregel is a popular distributed computing model for dealing with large-scale graphs. However, it can be tricky to implement graph algorithms correctly and efficiently in Pregel's vertex-centric model, especially when the algorithm has multiple computation stages, complicated data dependencies, or even communication over dynamic internal data structures. Some domain-specific languages (DSLs) have been proposed to provide more intuitive ways to implement graph algorithms, but due to the lack of support for remote access --- reading or writing attributes of other vertices through references --- they cannot handle the above mentioned dynamic communication, causing a class of Pregel algorithms with fast convergence impossible to implement. To address this problem, we design and implement Palgol, a more declarative and powerful DSL which supports remote access. In particular, programmers can use a more declarative syntax called chain access to naturally specify dynamic communication as if directly reading data on arbitrary remote vertices. By analyzing the logic patterns of chain access, we provide a novel algorithm for compiling Palgol programs to efficient Pregel code. We demonstrate the power of Palgol by using it to implement several practical Pregel algorithms, and the evaluation result shows that the efficiency of Palgol is comparable with that of hand-written code.Comment: 12 pages, 10 figures, extended version of APLAS 2017 pape

    Frontal Eye Field Neurons Assess Visual Stability Across Saccades

    Get PDF
    The image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change

    Present-day stress orientations and tectonic provinces of the NW Borneo collisional margin

    Get PDF
    Extent: 15p.Borehole failure observed on image and dipmeter logs from 55 petroleum wells across the NW Borneo collisional margin were used to determine maximum horizontal stress (σH) orientations; combined with seismic and outcrop data, they define seven tectonic provinces. The Baram Delta–Deepwater Fold-Thrust Belt exhibits three tectonic provinces: its inner shelf inverted province (σH is NW-SE, margin-normal), its outer shelf extension province (σH is NE-SW, margin-parallel), and its slope to basin floor compression province (σH is NW-SE, margin-normal). In the inverted province, σH reflects inversion of deltaic normal faults. The σH orientations in the extension and compression provinces reflect deltaic gravitational tectonics. The shale and minibasin provinces have been recognized in offshore Sabah. In the shale province, σH is N010°E, which aligns around the boundary of a massif of mobile shale. Currently, no data are available to determine σH in the minibasin province. In the Balingian province, σH is ESE-WNW, reflecting ESE absolute Sunda plate motions due to the absence of a thick detachment seen elsewhere in NW Borneo. The Central Luconia province demonstrates poorly constrained and variable σH orientations. These seven provinces result from the heterogeneous structural and stratigraphic development of the NW Borneo margin and formed due to complex collisional tectonics and the varied distribution and thicknesses of stratigraphic packages.Rosalind C. King, Mark R. P. Tingay, Richard R. Hillis, Christopher K. Morley, and James Clar
    corecore