48,827 research outputs found

    Parallel surrogate-assisted global optimization with expensive functions – a survey

    Get PDF
    Surrogate assisted global optimization is gaining popularity. Similarly, modern advances in computing power increasingly rely on parallelization rather than faster processors. This paper examines some of the methods used to take advantage of parallelization in surrogate based global optimization. A key issue focused on in this review is how different algorithms balance exploration and exploitation. Most of the papers surveyed are adaptive samplers that employ Gaussian Process or Kriging surrogates. These allow sophisticated approaches for balancing exploration and exploitation and even allow to develop algorithms with calculable rate of convergence as function of the number of parallel processors. In addition to optimization based on adaptive sampling, surrogate assisted parallel evolutionary algorithms are also surveyed. Beyond a review of the present state of the art, the paper also argues that methods that provide easy parallelization, like multiple parallel runs, or methods that rely on population of designs for diversity deserve more attention.United States. Dept. of Energy (National Nuclear Security Administration. Advanced Simulation and Computing Program. Cooperative Agreement under the Predictive Academic Alliance Program. DE-NA0002378

    A Parallel General Purpose Multi-Objective Optimization Framework, with Application to Beam Dynamics

    Full text link
    Particle accelerators are invaluable tools for research in the basic and applied sciences, in fields such as materials science, chemistry, the biosciences, particle physics, nuclear physics and medicine. The design, commissioning, and operation of accelerator facilities is a non-trivial task, due to the large number of control parameters and the complex interplay of several conflicting design goals. We propose to tackle this problem by means of multi-objective optimization algorithms which also facilitate a parallel deployment. In order to compute solutions in a meaningful time frame a fast and scalable software framework is required. In this paper, we present the implementation of such a general-purpose framework for simulation-based multi-objective optimization methods that allows the automatic investigation of optimal sets of machine parameters. The implementation is based on a master/slave paradigm, employing several masters that govern a set of slaves executing simulations and performing optimization tasks. Using evolutionary algorithms as the optimizer and OPAL as the forward solver, validation experiments and results of multi-objective optimization problems in the domain of beam dynamics are presented. The high charge beam line at the Argonne Wakefield Accelerator Facility was used as the beam dynamics model. The 3D beam size, transverse momentum, and energy spread were optimized

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    A multi-objective genetic algorithm for the design of pressure swing adsorption

    Get PDF
    Pressure Swing Adsorption (PSA) is a cyclic separation process, more advantageous over other separation options for middle scale processes. Automated tools for the design of PSA processes would be beneficial for the development of the technology, but their development is a difficult task due to the complexity of the simulation of PSA cycles and the computational effort needed to detect the performance at cyclic steady state. We present a preliminary investigation of the performance of a custom multi-objective genetic algorithm (MOGA) for the optimisation of a fast cycle PSA operation, the separation of air for N2 production. The simulation requires a detailed diffusion model, which involves coupled nonlinear partial differential and algebraic equations (PDAEs). The efficiency of MOGA to handle this complex problem has been assessed by comparison with direct search methods. An analysis of the effect of MOGA parameters on the performance is also presented

    An Evolutionary Algorithm to Optimize Log/Restore Operations within Optimistic Simulation Platforms

    Get PDF
    In this work we address state recoverability in advanced optimistic simulation systems by proposing an evolutionary algorithm to optimize at run-time the parameters associated with state log/restore activities. Optimization takes place by adaptively selecting for each simulation object both (i) the best suited log mode (incremental vs non-incremental) and (ii) the corresponding optimal value of the log interval. Our performance optimization approach allows to indirectly cope with hidden effects (e.g., locality) as well as cross-object effects due to the variation of log/restore parameters for different simulation objects (e.g., rollback thrashing). Both of them are not captured by literature solutions based on analytical models of the overhead associated with log/restore tasks. More in detail, our evolutionary algorithm dynamically adjusts the log/restore parameters of distinct simulation objects as a whole, towards a well suited configuration. In such a way, we prevent negative effects on performance due to the biasing of the optimization towards individual simulation objects, which may cause reduced gains (or even decrease) in performance just due to the aforementioned hidden and/or cross-object phenomena. We also present an application-transparent implementation of the evolutionary algorithm within the ROme OpTimistic Simulator (ROOT-Sim), namely an open source, general purpose simulation environment designed according to the optimistic synchronization paradigm
    • …
    corecore